master's thesis
Abstract
The master's thesis addresses analyzing and modeling the volatility of Bitcoin, the cryptocurrency with the largest marketcap. Volatility is a statistical measure of the dispersion of returns. We approximated it with realized volatility calculated on intra-daily log returns. We defined two baseline models based on a constant value and martingale property and tried to outperform them with both econometric and machine learning models. We used three error functions relative to our baseline models: MAE, MAPE, and RMSE. The best-performing econometric model is the HAR model. The best-performing machine learning model, which also outperforms the HAR model, is the LSTM recurrent neural network.
Keywords
volatility;forecasting;time series;cryptocurrencies;time-series analysis;machine learning;recurrent neural networks;LSTM;
Data
Language: |
English |
Year of publishing: |
2022 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[J. Pristovnik] |
UDC: |
519.2 |
COBISS: |
135369475
|
Views: |
560 |
Downloads: |
111 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Napovedovanje volatilnosti Bitcoina |
Secondary abstract: |
Magistrsko delo obravnava analizo in modeliranje volatilnosti Bitcoina, kriptovalute z največjo tržno kapitalizacijo. Volatilnost je statistična mera razpršenosti donosov. Aproksimirali smo jo z realizirano historično volatilnostjo, na podlagi visoko frekvenčnih logaritemskih donosov. Definirali smo dva osnovna modela, bazirana na konstantni vrednosti in martingalski lastnosti, ter ju poskušali preseči z ekonometričnimi modeli in modeli strojnega učenja. Uporabili smo tri različne funkcije napak, relativno na naše osnovne modele: MAE, MAPE in RMSE. Najuspešnejši ekonometrični model je model HAR, najuspešnejši model strojnega učenja je rekurenčna nevronska mreža tipa LSTM. Slednja je boljša tudi od modela HAR. |
Secondary keywords: |
volatilnost;napovedovanje;časovne vrste;kriptovalute;analiza časovnih vrst;strojno učenje;rekurenčne nevronske mreže;LSTM; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
0 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 2. stopnja |
Pages: |
XV, 73 str. |
ID: |
17547218 |