diplomsko delo
Matej Merhar (Author), Iztok Banič (Mentor)

Abstract

V diplomskem delu bomo najprej predstavili osnovne primere kontinuumov. Nato bomo predstavili inverzne limite inverznih zaporedij kompaktnih metričnih prostorov in enoličnih zveznih veznih funkcij ter dokazali njihove osnovne lastnosti. Definirali bomo tudi inverzne limite inverznih zaporedij kompaktnih metričnih prostorov in navzgor pol zveznih več ličnih veznih funkcij in si ogledali nekatere njihove lastnosti.

Keywords

matematika;zaporedja;inverzna zaporedja;inverzna limita;funkcije;kontinuum;diplomska dela;

Data

Language: Slovenian
Year of publishing:
Source: Maribor
Typology: 2.11 - Undergraduate Thesis
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
Publisher: [M. Merhar]
UDC: 51(043.2)
COBISS: 16830728 Link will open in a new window
Views: 2873
Downloads: 293
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: INVERSE LIMITS WITH ONE -VALUED AND MULTI-VALUED BONDING FUNCTIONS
Secondary abstract: In graduation thesis we first introduce the basic examples of continua. Next we introduce inverse limits of inverse sequences of compact metric spaces and one-valued continuous bonding functions and prove their basic properties. We also define inverse limits of inverse sequences of compact metric spaces and multi-valued upper semi-continuous bonding functions and examine some of their properties.
Secondary keywords: Inverse sequence;Inverse limit;Upper semi-continous function;Continuum;
URN: URN:SI:UM:
Type (COBISS): Undergraduate thesis
Thesis comment: Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo
Pages: 52 f.
Keywords (UDC): mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika;
ID: 17736
Recommended works:
, no subtitle data available
, Visiting Assistant Professor, 1.10.-31.12.2008, Ohio State University, Columbus, Ohio, USA
, študijsko gradivo