diplomsko delo
Abstract
V diplomskem delu obravnavamo trikotnike z obsegom P in ploščino A. Dokažemo izoperimetrično neenakost, iz katere izhaja, da pri določenih začetnih podatkih A in P (ki tej neenakosti ne ustrezata) takih trikotnikov sploh ni. Pri začetnih podatkih, ki pa neenakosti ustrezata, raziskujemo število ustreznih trikotnikov, njihove lastnosti ter se osredotočimo na kote. Podamo interval, na katerem ležijo koti trikotnika z danima obsegom in ploščino. Ugotovitve ponazorimo na izbranem primeru trikotnika, določenega z A = 2 in P = 7. Slednje je kot animacija prikazano s pomočjo računalniškega programa Geogebra.
Keywords
matematika;trikotniki;ploščina;obseg;kot;diplomska dela;
Data
Language: |
Slovenian |
Year of publishing: |
2009 |
Source: |
Maribor |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
Publisher: |
[K. Štravs] |
UDC: |
51(043.2) |
COBISS: |
16848648
|
Views: |
3152 |
Downloads: |
253 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Triangles sharing area and perimeter |
Secondary abstract: |
In diploma paper we explore triangles with perimeter P and area A. We prove the isoperimetric inequality from which results that by certain initial data A and P (that do not correspond with inequality) triangles do not exist. With initial data that correspond with inequality we explore the number of proper triangles, their characteristics and we focus on the angles. We offer the interval on which we find the angles of all the triangles with perimeter P and area A. Findings are illustrated on the chosen model of the triangle with A = 2 and P = 7. The latter is presented as an animation using the computer program Geogebra. |
Secondary keywords: |
triangle;perimeter;area;angle;isoperimetric inequality; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Pages: |
40 f. |
Keywords (UDC): |
mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika; |
ID: |
17755 |