diplomsko delo
Adrijana Tivadar (Author), Janja Jerebic (Mentor)

Abstract

Diplomsko delo obravnava particijsko dimenzijo grafov in je sestavljeno iz treh poglavij. V prvem poglavju bomo predstavili osnovne pojme iz teorije grafov in spoznali štiri najbolj znane produkte grafov, s poudarkom na kartezičnem produktu. Drugo poglavje bomo namenili predstavitvi dveh, za nas najpomembnejših dimenzij grafov. To sta metrična in particijska dimenzija grafov. Najprej bomo definirali metrično dimenzijo grafov in spoznali njene lastnosti. Nato se bomo posvetili particijski dimenziji grafov in njenim lastnostim. Pri obeh dimenzijah bomo za boljšo predstavitev podali tudi nekaj primerov. Na koncu tega poglavja pa si bomo ogledali tudi povezanost omenjenih dveh dimenzij. V zadnjem poglavju bomo definirali particijsko dimenzijo kartezičnega produkta grafov. Pogledali bomo zgornjo mejo te dimenzije, nato bomo spoznali njeno povezavo z metrično dimenzijo in na koncu navedli tudi dva aktualna odprta problema.

Keywords

matematika;grafi;rešljiva particija;množice;metrična dimenzija;kartezični produkti;diplomska dela;

Data

Language: Slovenian
Year of publishing:
Source: Maribor
Typology: 2.11 - Undergraduate Thesis
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
Publisher: [A. Tivadar]
UDC: 51(043.2)
COBISS: 18385672 Link will open in a new window
Views: 2321
Downloads: 154
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: THE PARTITION DIMENSION OF GRAPHS
Secondary abstract: The diploma paper discusses the partition dimension of graphs and consists of three chapters. In the first chapter the basic terms of the graph theory as well as the four most widely known products of graphs, with the emphasis on the Cartesian product, are presented. The second chapter is devoted to the presentation of the two for us most important dimensions of graphs. These are the metric and the partition dimension of graphs. First of all the metric dimension of graphs and it characteristics are presented. Afterwards the emphasis is on the partition dimension of graphs and its features. For a better understanding of both dimensions some examples are added. At the end of this chapter the connections between the two dimensions are presented. In the last chapter the partition dimension of the Cartesian product of graphs is defined. The upper bound of this dimension and the connections with the metric dimension are also shown. In the end two current open problems are stated.
Secondary keywords: resolving partition;partition dimension of graphs;resolving set;metric dimension of graphs;the Cartasian product of graphs.;
URN: URN:SI:UM:
Type (COBISS): Undergraduate thesis
Thesis comment: Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo
Pages: 48 f.
Keywords (UDC): mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika;
ID: 19278
Recommended works:
, diplomsko delo
, Seminar on algebraic combinatorics, Ben-Gurion University of the Negev, Beer Sheva, Israel, April 10, 2002
, Group Theory Seminar, 21.5.2008, Ohio State University, Columbus, Ohio, USA
, Wright State Department of Mathematics and Statistics Colloquium, 19.9.2008 Wright State University, Dyton, Ohio, USA
, Combinatorics Seminar, 15.10.2008, Ohio State University, Columbus, Ohio, USA