magistrsko delo
Abstract
V magistrski nalogi je predstavljen sistem za nadzor rezalnega orodja, ki temelji na
sledenju toka na glavnem vretenu z uporabo umetne nevronske mreže. Glavni namen
aplikacije je razširiti vpogled, ki ga ima operater v stanje orodja med delovanjem
stružnice CNC. Program za analizo lahko nemoteno deluje paralelno na procesnem
računalniku in prejema podatke preko podatkovnega omrežja s krmilnika stružnice. V
delu so predstavljeni proces zajemanja podatkov za učno bazo umetne nevronske mreže
tipa Long-Short Term Memory, arhitektura in učenje nevronske mreže, ki je uporabljena
v tej aplikaciji, ter validacija naučenega modela z umetno inteligenco na novih podatkih.
Prav tako sta predstavljena tudi izdelava in delovanje programa, ki se lahko izvaja na
procesnem računalniku za potrebe pomožne diagnostike orodja.
Keywords
tok na glavnem vretenu;nevronska mreža;nadzor obrabe orodja;LSTM;umetna inteligenca;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2023 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
[N. Turšič] |
UDC: |
621.941.025:004.8(043.2) |
COBISS: |
172751619
|
Views: |
101 |
Downloads: |
16 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Intelligent tool condition monitoring system utilizing spindle current measurements |
Secondary abstract: |
The thesis presents a tool condition monitoring system, based on the tracking of current
flowing through the main spindle with an artificial neural network. The main purpose of
this application is to provide additional insight to the operator regarding tool wear
during the operation of the CNC lathe. The TCM program can run independently on a
process computer next to the lathe, receiving data via the ethernet network from the
machines PLC. We present the measurement processes with which we have obtained the
training data for the Long-Short Term Memory neural network, the design and training
of said network and the validation of the artificial intelligence model on a new dataset.
Along with the trained model we also provide a prototype software designed to use said
model for the purposes of assistive tool condition monitoring. |
Secondary keywords: |
main spindle current;neural network;tool condition monitoring;long-short
term memory;artificial intelligence; |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Mehatronika |
Pages: |
1 spletni vir (1 datoteka PDF (VIII, 61 f.)) |
ID: |
19803827 |