magistrsko delo
Abstract
Strojno popravljanje slovničnih napak v slovenskem jeziku je še ne rešen problem. Rešitev bi olajšala pisno komunikacijo. Problem v okviru magistrske naloge razdelimo na podprobleme: popravljanje zapisa besed, zaznavanje napačno zapisanih besed, popravljanje pregibanja besed in popravljanje vrstnega reda besed. Najboljše rezultate dosežemo z izpopolnjevanjem slovenskega SloT5 modela. Najboljše modele uporabimo pri izdelavi spletne aplikacije. Ugotovimo, da je pri reševanju problema popravljanja slovničnih napak najbolj pomembna izbira ustreznega osnovnega jezikovnega modela in izgradnja kvalitetne učne množice. Pri izgradnji učne množice skušamo zajeti čim več kvalitetnih in realnih slovničnih napak, ne da bi pri tem spremenili ali pokvarili izvorni pomen besedila.
Keywords
veliki jezikovni modeli;slovnične napake;popravljanje slovničnih napak;slovnični popravki;nevronske mreže;model T5;transformerji;model SloBERTa;računalništvo in informatika;magisteriji;
Data
Language: |
Slovenian |
Year of publishing: |
2023 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[M. Božič] |
UDC: |
004.8:81'322(043.2) |
COBISS: |
168228099
|
Views: |
55 |
Downloads: |
14 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Adaptation of large language models for grammar correction in Slovene |
Secondary abstract: |
Machine correction of grammatical errors in the Slovenian language is still an unsolved problem. Its solution would improve written communication. We divide the problem into subproblems: correcting word spelling, detecting misspelled words, correcting word inflection and correcting word order. The best results are achieved by finetuning the Slovenian SloT5 model. We use the best models in a web application. We conclude that in correcting grammatical errors, the most important consideration is the choice of a large language model and construction of a learning set. When building the learning set, we try to capture as many realistic grammatical errors as possible, without changing the meaning of the text. |
Secondary keywords: |
large language models;grammar correction;grammatical corrections;neural networks;machine learning;Slovene;model T5;transformers;model BERT;model SloBERTa;computer science;computer and information science;master's degree;Računalniško jezikoslovje;Strojno učenje;Slovenščina;Računalništvo;Univerzitetna in visokošolska dela; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
1000471 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
95 str. |
ID: |
19933610 |