delo diplomskega seminarja
Nik Mrhar (Author), Aleš Vavpetič (Mentor)

Abstract

Diplomska naloga preučuje faktorizacijo lihih celih števil, ki jih lahko na dva različna načina zapišemo v obliki $mx^2 \pm ny^2$. V posebnem primeru, ko je $m = n = 1$, sta se s tem problemom ukvarjala že Pierre de Fermat ter Leonhard Euler, katerih rešitve tudi predstavimo. V nadaljevanju te primere posplošimo ter si ogledamo še splošno rešitev Lucasa in Mathewsa. Ker se izkaže, da se negativni primer $mx^2 - ny^2$ precej razlikuje od pozitivnega primera $mx^2 + ny^2$, si ogledamo Pellovo enačbo $x^2 - mny^2 = 1$, ki nam porodi Pellovo povezane rešitve problema. Te pa za razliko od pozitivnega primera dajo trivialen razcep.

Keywords

matematika;faktorizacija;stožnice;Eulerjev razcep;Lucas-Mathewsova formula;Pellova enačba;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [N. Mrhar]
UDC: 511
COBISS: 165455107 Link will open in a new window
Views: 724
Downloads: 35
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Using Conic Sections to Factor Integers
Secondary abstract: This thesis explores the factorization of odd integers that can be expressed in two different ways as $mx^2 \pm ny^2$. A special case, when $m = n = 1$, was the subject of study by Pierre de Fermat and Leonhard Euler, whose solutions we also present. We continue with a generalization of the problem and present another solution by Lucas and Mathews. As the negative case $mx^2 - ny^2$ turns out to be quite different from the positive case $mx^2 + ny^2$, we take a look at Pell’s equation $x^2 - mny^2 = 1$. We see that Pell-related solutions of the problem produce trivial factorizations.
Secondary keywords: factorization;conic sections;Euler factorization;Lucas-Mathews formula;Pell equation;
Type (COBISS): Final seminar paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Pages: 30 str.
ID: 19956540
Recommended works: