delo diplomskega seminarja
Abstract
Diplomska naloga preučuje faktorizacijo lihih celih števil, ki jih lahko na dva različna načina zapišemo v obliki $mx^2 \pm ny^2$. V posebnem primeru, ko je $m = n = 1$, sta se s tem problemom ukvarjala že Pierre de Fermat ter Leonhard Euler, katerih rešitve tudi predstavimo. V nadaljevanju te primere posplošimo ter si ogledamo še splošno rešitev Lucasa in Mathewsa. Ker se izkaže, da se negativni primer $mx^2 - ny^2$ precej razlikuje od pozitivnega primera $mx^2 + ny^2$, si ogledamo Pellovo enačbo $x^2 - mny^2 = 1$, ki nam porodi Pellovo povezane rešitve problema. Te pa za razliko od pozitivnega primera dajo trivialen razcep.
Keywords
matematika;faktorizacija;stožnice;Eulerjev razcep;Lucas-Mathewsova formula;Pellova enačba;
Data
Language: |
Slovenian |
Year of publishing: |
2023 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[N. Mrhar] |
UDC: |
511 |
COBISS: |
165455107
|
Views: |
724 |
Downloads: |
35 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Using Conic Sections to Factor Integers |
Secondary abstract: |
This thesis explores the factorization of odd integers that can be expressed in two different ways as $mx^2 \pm ny^2$. A special case, when $m = n = 1$, was the subject of study by Pierre de Fermat and Leonhard Euler, whose solutions we also present. We continue with a generalization of the problem and present another solution by Lucas and Mathews. As the negative case $mx^2 - ny^2$ turns out to be quite different from the positive case $mx^2 + ny^2$, we take a look at Pell’s equation $x^2 - mny^2 = 1$. We see that Pell-related solutions of the problem produce trivial factorizations. |
Secondary keywords: |
factorization;conic sections;Euler factorization;Lucas-Mathews formula;Pell equation; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja |
Pages: |
30 str. |
ID: |
19956540 |