master's thesis
Abstract
In the business world, keeping customers coming back and staying loyal
is crucial for making money. We often measure this loyalty through customer
satisfaction and how often people buy from a store or brand. This master’s
thesis introduces the innovative index called Stickiness Index, tailored to
capture and quantify repetitive purchases of items in the grocery stores.
Our primary aim is to construct a robust Stickiness Index that effectively
models items with high stickiness—those frequently repurchased after initial
acquisition. The research unfolds in three key stages, including 3 different
approaches for calculating Stickiness Index. Each stage is upgraded version
of the previous, from simple event counting to incorporating item frequencies
in the equation. In each stage we reveal the results and rationalize them. Additional fourth stage is presented, where we look at different item frequencies
and how they affect the Stickiness Index. Analyzing the results, including
price dynamics, item categorization, and seasonality, informs our understanding of consumer behavior. Moreover, this study demonstrates the real-world
utility of the Stickiness Index by integrating it into machine learning models
and strategic guidance for decision-making including the Stickiness Index.
Keywords
grocery store;Stickiness Index;machine learning;analysis;modeling;computer science;master's thesis;
Data
Language: |
English |
Year of publishing: |
2023 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[M. Oražem] |
UDC: |
004.8:658.871(043.2) |
COBISS: |
169463811
|
Views: |
66 |
Downloads: |
12 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Modeliranje lepljivosti izdelkov v trgovini z živili |
Secondary abstract: |
V poslovnem svetu je ohranjanje stalnih strank in njihova zvestoba ključnega
pomena za ustvarjanje dobička. To zvestobo pogosto merimo prek zadovoljstva strank in kako pogosto ljudje nakupujejo v določeni trgovini. Magistrsko delo uvaja nov indeks, imenovan indeks lepljivosti (Stickiness Index), ki je prilagojen za ocenjevanje ponavljajočih se nakupov izdelkov v trgovinah s prehrambnimi izdelki. Naš osnovni cilj je izdelava indeksa lepljivosti, ki modelira izdelke z visoko lepljivostjo — tiste, ki se pogosto znova kupujejo po prvem nakupu. Raziskava se odvija v treh ključnih fazah, vključno
z različnimi pristopi za izračun indeksa lepljivosti. Vsaka faza predstavlja
nadgradnjo prejšnje, pri čemer začnemo s preprostim štetjem dogodkov in
nadaljujemo z vključevanjem frekvence nakupovanja izdelkov v enačbo. V
vsaki fazi predstavimo rezultate in jih pojasnimo. Poleg tega je predstavljena
še dodatna četrta faza, kjer preučimo različne frekvence izdelkov in kako vplivajo na indeks lepljivosti. Analiza rezultatov, vključno s cenovno dinamiko,
razvrščanjem izdelkov v skupine in sezonskimi vzorci, poglobi naše razumevanje potrošnikov. Poleg tega ta študija demonstrira praktično uporabnost
indeksa lepljivosti z vključitvijo v modele strojnega učenja in usmerjanjem
strateških odločitev v trgovini. |
Secondary keywords: |
indeks lepljivosti;analiza;modeliranje;magisteriji;Trgovina z živili;Strojno učenje;Računalništvo;Univerzitetna in visokošolska dela; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
1000471 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
VIII, 53 str. |
ID: |
20176119 |