magistrsko delo
Abstract
Postopek odstranjevanja pegastega šuma je neizogiben pri obdelavi slik z radarjem s sintetično odprtino (SAR). Obstaja več različnih metod za odstranjevanje pegastega šuma, vendar se je postopek s konvolucijsko nevronsko mrežo (CNN) izkazal kot zelo učinkovita metoda.
Pri preprosti strukturi CNN se še vedno izgubi precejšnje število podrobnosti na sliki. Za rešitev tega problema je bila uporabljena arhitektura kodirnika – dekoderja. Model se uči s pristopom, ki temelji na veliki količini podatkov, z uporabo algoritma gradientnega spuščanja s kombinacijo spreminjanja ojačanja pri odstranjevanju šuma in funkcije izgube celotne variacije. Poskusi, izvedeni na realnih slikah, kažejo, da ta metoda dosega pomembne izboljšave v primerjavi z ostalimi metodami.
Keywords
pegasti šum;radar s sintetično odprtino;konvolucijska nevronska mreža;arhitektura kodirnik – dekodirnik;magistrske naloge;
Data
| Language: |
Slovenian |
| Year of publishing: |
2023 |
| Typology: |
2.09 - Master's Thesis |
| Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
| Publisher: |
[T. Habjanič] |
| UDC: |
004.85:[004.932:528.8.044.2](043.2) |
| COBISS: |
189928707
|
| Views: |
89 |
| Downloads: |
11 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary title: |
Despeckling of SAR image using deep learning |
| Secondary abstract: |
Despecklink process is inevitable in synthetic aperture radar (SAR) images processing. There are several different methods for removing speckled noise, but the Convolutional Neural Network (CNN) approach has proven to be a very effective method.
With a simple CNN structure, a considerable amount of detail in the image is still lost. An encoder – decoder architecture was used to solve this problem. The model is trained using an approach based on a large amount of data, utilizing the gradient descent algorithm in combination with adaptive gain tuning for speckle removal and the total variation loss function. Experiments performed on real images show that this method achieves significant improvements compared to other methods. |
| Secondary keywords: |
descpeckling;synthetic aperture radar;convolutional neural network;encoder – decoder architecture; |
| Type (COBISS): |
Master's thesis/paper |
| Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Elektrotehnika |
| Pages: |
1 spletni vir (1 datoteka PDF (X, 62 f.)) |
| ID: |
21796425 |