geographical distribution and genetic diversity of the associated 16SrV phytoplasmas
Zala Kogej (Author), Gabrijel Seljak (Author), Tjaša Jakomin (Author), Jakob Brodarič (Author), Ana Vučurović (Author), Sandra Pedemay (Author), Pascal Salar (Author), Sylvie Malembic-Maher (Author), Xavier Foissac (Author), Nataša Mehle (Author)

Abstract

Flavescence dorée (FD) phytoplasma from 16SrV-C and -D subgroups cause severe damage to grapevines throughout Europe. This phytoplasma is transmitted from grapevine to grapevine by the sap-sucking leafhopper Scaphoideus titanus. European black alder and clematis serve as perennial plant reservoirs for 16SrV-C phytoplasma strains, and their host range has recently been extended to hazelnuts. In Slovenia, hazelnut orchards are declining due to 16SrV phytoplasma infections, where large populations of the non-autochthonous leafhopper Orientus ishidae have been observed. To better characterise the phytoplasma-induced decline of hazelnut and possible transmission fluxes between these orchards and grapevine, genetic diversity of 16SrV phytoplasmas in grapevine, hazelnut and leafhoppers was monitored from 2017 to 2022. The nucleotide sequence analysis was based on the map gene. The most prevalent map genotype in grapevine in all wine-growing regions of Slovenia was M54, which accounted for 84 % of the 176 grapevines tested. Besides M54, other epidemic genotypes with lower frequency were M38 (6 %), M51 (3 %), M50 (2 %) and M122 (1 %). M38, M50 and M122 were also detected in infected cultivated hazelnuts and in specimens of O. ishidae leafhopper caught in declining hazelnut orchards. It suggests that this polyphagous vector could be responsible for phytoplasma infection in hazelnut orchards and possibly for some phytoplasma exchanges between hazelnuts and grapevine. We hereby describe new genotypes: M158 in grapevine as well as four never reported genotypes M159 to M162 in hazelnut. Of these four genotypes in hazelnut, one (M160) was also detected in O. ishidae. Analysis of additional genes of the new genotypes allowed us to assign them to the VmpA-III cluster, which corresponds to the 16SrV-C strains previously shown to be compatible with S. titanus transmission.

Keywords

fitoplazme;leska;trta;zlata trsna rumenica;bolezni vinske trte;rastlinske bolezni;phytoplasmas;haselnuts;grapevine;Flavescence dorée;epidemiology;plant disease;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: NIB - National Institute of Biology
UDC: 632
COBISS: 159155203 Link will open in a new window
ISSN: 1664-462X
Views: 429
Downloads: 211
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary title: Epidemiology of Flavescence dorée and hazelnut decline in Slovenia: geographical distribution and genetic diversity of the associated 16SrV phytoplasmas
Secondary keywords: fitoplazme;leska;trta;zlata trsna rumenica;bolezni vinske trte;rastlinske bolezni;Vitis vinifera;Corylus avellana;
Source comment: Soavtorji: Gabrijel Seljak, Tjaša Jakomin, Jakob Brodarič, Ana Vučurović, Sandra Pedemay, Pascal Salar, Sylvie Malembic-Maher, Xavier Foissac and Nataša Mehle; Nasl. z nasl. zaslona; Opis vira z dne 18. 7. 2023;
Pages: str. 1-12
Volume: ǂVol. ǂ14
Issue: ǂ[art.] ǂ1217425
Chronology: 2023
ID: 23285173