doktorska disertacija
Gregor Leban (Author), Ivan Bratko (Mentor), Blaž Zupan (Co-mentor)

Abstract

Vizualizacija podatkov s strojnim učenjem

Keywords

vizualizacija podatkov;strojno učenje;vizualno odkrivanje znanja v podatkih;eksplorativna analiza podatkov;računalništvo;disertacije;

Data

Language: Slovenian
Year of publishing:
Typology: 2.08 - Doctoral Dissertation
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [G. Leban]
UDC: 004(043.3)
COBISS: 6128212 Link will open in a new window
Views: 15
Downloads: 72
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Data visualization using machine learning
Secondary abstract: Data visualization is a tool that has an enormous potential for extracting knowledge from data. Visualizing the right set of features in a right way can clearly identify interesting and potentially useful patterns. However, not all data projections are equally interesting and the task of a data miner is to find the most insightful ones. To help the user we developed a method called VizRank, which can automatically compute an estimate of interestingness for each of possible projections of class labeled data. We can rank projections according to this score and then focus only on a small subset of best ranked projections, that will provide the greatest insight into the data. VizRank can be applied on any visualization method that maps attribute values to the position of a shown symbol. Examples of such methods are scatterplot, radviz, polyviz and general linear projections. We also extended the concept of projection ranking to parallel coordinates method and to mosaic diagrams. To demonstrate the usefulness of the developed algorithms we present results on data sets from UCI repository and from cancer microarray data analysis.
Secondary keywords: data visualization;machine learning;visual data mining;exploratory data analysis;
File type: application/pdf
Type (COBISS): Dissertation
Thesis comment: Univerza v Ljubljani, Fakulteta za računalništvo in informatiko
Pages: 133 str.
ID: 23809258
Recommended works:
, doktorska disertacija
, easy machine learning for biospectroscopy
, magistrsko delo Organizacija in management informacijskih sistemov