diplomsko delo
Abstract
V diplomskem delu se ukvarjamo s kvazi-interpolacijo. Pri klasični interpolaciji želimo potegniti krivuljo skozi vse podane točke, kar tipično privede do reševanja velikega sistema linearnih enačb, s kvazi-interpolacijo pa rešujemo več manjših, lokalnih sistemov. Pri kvazi-interpolaciji točk ne interpoliramo, temveč se jim dovolj dobro približamo. K nalogi pristopamo tako, da najprej pogledamo primer interpolacije s polinomi, potem pa definiramo in pojasnimo osnovne gradnike obravnavanih kvazi-interpolantov, to so t.i. B-zlepki. Zatem kvazi-interpolacijo formalno definiramo in dokažemo red konvergence za izbrane kvazi-interpolante. Tekom naloge izpeljane metode tudi implementiramo in jih prikažemo na grafih. Na koncu izpeljemo lokalno metodo najmanjših kvadratov in si pogledamo praktičen primer uporabe kvazi-interpolacije z odstranitvijo šuma iz signala.
Keywords
B-zlepki;aproksimacija;interpolacija; kvazi-interpolacija;računalništvo;matematika;interdisciplinarni študij;univerzitetni študij;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2024 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[L. Korotaj] |
UDC: |
004:51(043.2) |
COBISS: |
210057475
|
Views: |
106 |
Downloads: |
28 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Quasi-interpolation with B-splines |
Secondary abstract: |
In this thesis, we focus on quasi-interpolation. In classical interpolation, the goal is to draw a curve through all given points, which often results in a large system of linear equations. Quasi-interpolation, on the other hand, involves solving several smaller, local systems. With quasi-interpolation, we do not interpolate the points directly; instead, we approximate them sufficiently well. Our approach begins by examining an example of interpolation with polynomials, followed by the definition and explanation of the fundamental building blocks of quasi-interpolants, namely B-splines. We then formally define quasi-interpolation and prove the order of convergence for chosen quasi-interpolants. Throughout the thesis, we implement the derived methods and present them graphically. Finally, we derive the local method of least squares and explore a practical application of quasi-interpolation in noise removal from a signal. |
Secondary keywords: |
B-splines;approximation;interpolation;quasi-interpolation
;computer science;computer and information science;computer science and mathematics;interdisciplinary studies;diploma; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000407 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
1 spletni vir (1 datoteka PDF (36 str.)) |
ID: |
24920784 |