magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo
Abstract
Največji problem pri sortiranju smeti je prepoznavanje in klasifikacija smeti, ki je lahko direktna glede na fizikalne lastnosti ali pa indirektna s kamero. Pri slednji se po navadi uporabljajo nevronske mreže, naučene na pripravljeni učni množici za prepoznavanje objektov na sliki. V nalogi smo natrenirali algoritem YOLO na javno dostopni učni množici z imenom TACO. Za namen testiranja smo naredili testno robotsko celico, tako da smo izdelali mehko odrivalo in ga namestili na sodelovalnega robota Fanuc CR-7iA/L ter razvili spletno aplikacijo za sledenje in upravljanje sortiranja.
Keywords
magistrske naloge;globoko učenje;prepoznavanje objektov;YOLO;TACO;mehka robotika;sodelovalni roboti;
Data
Language: |
Slovenian |
Year of publishing: |
2024 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL FS - Faculty of Mechanical Engineering |
Publisher: |
[M. Čampelj] |
UDC: |
007.52:681.52:628.4(043.2) |
COBISS: |
218803715
|
Views: |
169 |
Downloads: |
70 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Deep learning-based trash recognition and sorting system using soft robotics |
Secondary abstract: |
The biggest challenge in waste sorting is the recognition and classification of waste, which can be done either directly, based on physical properties, or indirectly, using a camera. The latter usually involves the use of neural networks trained on a prepared training set to recognize objects in the image. We trained the YOLO algorithm on a publicly available dataset called TACO. For testing purposes, we created a test robotic cell by developing a soft pusher, mounting it on the collaborative robot Fanuc CR7iA/L and developed a web application for tracking and managing the sorting process. |
Secondary keywords: |
master thesis;deep learning;object recognition;YOLO;TACO;soft robotics;collaborative robots; |
Type (COBISS): |
Master's thesis/paper |
Study programme: |
0 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. Ljubljana, Fak. za strojništvo |
Pages: |
XX, 59 str. |
ID: |
25001791 |