diplomsko delo
Jakob Poglavc (Author), Marko Čepin (Mentor)

Abstract

Glavni namen diplomskega dela je s pomočjo arhivskih meritev hitrosti vetra in matematičnega modela oceniti proizvodnjo električne energije vetrne elektrarne, oceniti porabo domače električne energije, oceniti električno baterijo kot shranjevalnik energije in njeno stanje napolnjenosti in zagotavljati enakost med proizvodnjo in porabo električne energije v vsakem časovnem koraku. Ocena proizvodnje električne energije iz vetrne elektrarne je odvisna od lokacije, velikosti elektrarne, učinkovitosti, vremenskih parametrov in časovnih korakov. Ocena porabe domače električne energije je odvisna od števila domačih porabnikov električne energije, njihove moči in časa delovanja ter časovnih korakov. Ocena električne baterije vključuje spremembo stanja napolnjenosti in kapacitete baterije. V prvem delu diplomske naloge so podrobneje opisani teoretični principi delovanja in dejavniki, ki vplivajo na izračune. Opisana je zgodovina vetrne elektrarne in kaj vse vpliva na njeno proizvodnjo. Prikazano je, kako izračunamo porabo električne energije našega gospodinjstva in nekaj o shranjevanju energije v baterije. V drugem delu smo teorijo pretvorili v prakso in poračunali proizvodnjo električne energije vetrne elektrarne s pomočjo pridobljenih podatkov o vetru na izbrani lokaciji in enačb predstavljenih v prvem delu. Porabo domačega gospodinjstva smo dobili glede na izpisane specifikacije vsake delujoče naprave in enačbe za električno energijo ter jih po potrebi skalirali. Vpliv baterije pa je bil predstavljen kot shranjevalnik, ki odvečno energijo shrani in jo po potrebi vrne v sistem, z upoštevanjem predhodno predstavljenih omejitev. Analiza matematičnega modela je pokazala, da bi vetrna elektrarna na izbrani lokaciji lahko obratovala in oskrbovala gospodinjstva, vendar ne v vsakem trenutku, saj nam bi težave povzročali dnevi brez vetra. Vetrna elektrarna ne bi mogla oskrbovati gospodinjstev samostojno kot tudi ne z dodatno baterijo. Za dni brez vetra bi potrebovali nadomestilo. Največ težav pri samooskrbi bi povzročale tri konice: zjutraj okoli šeste ure, ko se ljudje zbudijo, okoli poldne, ko je čas za kosilo in nazadnje okoli pete popoldne, ko se kuhajo večerje. Najbolj optimalna obremenitev za našo vetrno elektrarno AN Bonus 1000/54 in 2,4 MWh baterijo je 450 gospodinjstev. Najvetrovnejši mesec v zimskem obdobju je bil januar.

Keywords

veter;energija;elektrarne;baterije;samooskrba;univerzitetni študij;Elektrotehnika;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FE - Faculty of Electrical Engineering
Publisher: [J. Poglavc]
UDC: 621.311.245(043.2)(0.034.2)
COBISS: 207184899 Link will open in a new window
Views: 50
Downloads: 20
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Electric energy supply considering a wind power plant and battery
Secondary abstract: The main purpose of the thesis is to use archival wind speed measurements and a mathematical model to estimate the wind farm's electricity production, to estimate the household electric energy consumption, to estimate the electric battery as an energy storage and its state of charge, and to ensure the equality between electric energy production and consumption at each time step. The estimation of electric energy production from a wind farm depends on the location, size of the farm, efficiency, weather parameters and time steps. The estimation of household electric energy consumption depends on the number of household electric energy consumers, their power and operating time and time steps. The assessment of the electric battery includes the variation of the state of charge and the capacity of the battery. The first part of the thesis describes in more detail the theoretical principles of operation and the factors influencing the calculations. The history of the wind farm and what all influences its production is described. How to calculate the electric energy consumption of our household and something about storing energy in batteries is presented. In the second part, we put theory into practice and calculate the electric energy production of a wind farm using the wind data obtained at the chosen location and the equations presented in the first part. The consumption of the household was obtained according to the extracted specifications of each operating device and the equations for the electric energy, and scaled where necessary. The impact of the battery was presented as a storage device, which stores the excess energy and returns it to the system when needed, subject to the constraints presented previously. The analysis of the mathematical model showed that a wind farm at the chosen location could be operational and supply households, but not at all times, as days without wind would cause problems. The wind farm could not supply the households on its own, nor could it supply them with an additional battery. We would need compensation for days without wind. The three peaks would cause the most problems for self-supply: in the morning around 6am when people wake up, around noon when it is time for lunch and finally around 5pm when dinners are cooked. The most optimal load for our AN Bonus 1000/54 wind farm with a 2.4 MWh battery is 450 households. The windiest month during the winter period was January.
Secondary keywords: wind;wind energy;wind farm;electric energy;battery;self-sufficient supply;
Type (COBISS): Bachelor thesis/paper
Study programme: 1000313
Thesis comment: Univ. v Ljubljani, Fak. za elektrotehniko
Pages: 1 spletni vir (1 datoteka PDF (XVI, 46 str.))
ID: 25011553