magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo
Urška Bratuša (Author), Primož Podržaj (Mentor)

Abstract

V okviru magistrske naloge smo modelirali in krmilili kvadrokopter z uporabo LQR metode v programskem okolju Simulink. Model kvadrokopterja smo linearizirali okrog točke lebdenja in ga predstavili v prostoru stanj, nato pa s pomočjo LQR metode določili matriko ojačanj K za linearni model. Enak pristop smo uporabili tudi za nelinearni model. Oba modela smo analizirali z vidika odziva na skočno funkcijo. Na nelinearnem modelu smo primerjali odziv sistema z uporabo LQR metode in PID krmilnika. Krmiljenje je vključevalo rotacije okrog osi x, y in z ter translacijo v z – smeri. Poleg tega smo izvedli identifikacijo ključnih parametrov za modeliranje kvadrokopterja s pomočjo sistema za zajemanje podatkov. Ugotovili smo, da LQR metoda, zasnovana za linearne modele, učinkovito deluje tudi na nelinearnih modelih in da zagotavlja odziv brez prenihaja v primerjavi s PID krmilnikom.

Keywords

magistrske naloge;kvadrokopter;LQR algoritem;PID krmilnik;nelinearen model;simulink;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FS - Faculty of Mechanical Engineering
Publisher: [U. Bratuša]
UDC: 629.014.9:004.021:004.925(043.2)
COBISS: 218749187 Link will open in a new window
Views: 178
Downloads: 103
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Modeling and control of a quadcopter using the LQR method in Simulink
Secondary abstract: In the master's thesis, we modeled and controlled a quadcopter using the LQR method in the Simulink software environment. The quadcopter model was linearized around the hovering point and represented in state space, then the gain matrix K for the linear model was determined using the LQR method. The same approach was applied to the nonlinear model. Both models were analyzed in terms of step response. In the nonlinear model, we compared the system response using the LQR method and the PID controller. Control included rotations around the x, y, and z axes and translation in the z – direction. Additionally, we identified key parameters for modeling the quadcopter using a data acquisition system. We found that the LQR method, designed for linear models, also works on nonlinear models and provides a response without overshoot compared to the PID controller.
Secondary keywords: master thesis;quadcopter;LQR algorithm;PID controller;nonlinear model;simulink;
Type (COBISS): Master's thesis/paper
Study programme: 0
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. Ljubljana, Fak. za strojništvo
Pages: XX, 55 str.
ID: 25021691
Recommended works:
, magistrsko delo magistrskega študijskega programa II. stopnje Strojništvo
, diplomsko delo Visokošolskega strokovnega študijskega programa I. stopnje Strojništvo
, diplomska naloga univerzitetnega študijskega programa