diplomsko delo
Abstract
V nalogi bomo predstavili bijektivne rezultate, povezane z razčlenitvami.
Najprej je predstavljena terminologija in teoretične osnove rodovnih funkcij
in razčlenitev, ki so osnova za delo. Za razumevanje povezave med bijek-
tivnim dokazom in rodovnimi funkcijami, bomo spoznali dekompozicije Yo-
ungovih diagramov. Predstavili bomo klasične rezultate Eulerjevega petko-
tniškega izreka, kot je rekurzivna zveza za število razčlenitev ter Franklinovo
involucijo. V preostanku dela obravnavamo orodja, potrebna za pridobitev
dveh direktnih bijekcij rekurzivne zveze. Prvo je rang razčlenitve, ki služi
kot osnova za Dysonovo preslikavo, s katero pridobimo eksplicitno direktno
bijekcijo. Drugo orodje je princip involucije, ki nam nudi iterativen postopek
za pridobitev druge direktne bijekcije.
Keywords
odsotnost zaposlenih;zdravstveni absentizem;napovedovanje zdravstvenega absentizma;podatkovna analiza;obogatitve podatkov;analiza ključnih atributov;računalništvo;matematika;interdisciplinarni študij;univerzitetni študij;diplomske naloge;
Data
| Language: |
Slovenian |
| Year of publishing: |
2024 |
| Typology: |
2.11 - Undergraduate Thesis |
| Organization: |
UL FRI - Faculty of Computer and Information Science |
| Publisher: |
[A. Stepančič] |
| UDC: |
004.85:
331.316.2(043.2) |
| COBISS: |
208498947
|
| Views: |
63 |
| Downloads: |
15 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary title: |
Bijectively proving integer partitions identities |
| Secondary abstract: |
In this thesis, we will present bijective results related to integer partitions. Initially, the terminology and theoretical foundations of generating functions and partitions, necessary for understanding the work, are introduced. To understand the connection between bijective proof and generating functions, we will explore the decompositions of Young diagrams. We will present classic results from Euler’s pentagonal theorem, such as the recursive relationship for the number of partitions and Franklin’s involution. In the remainder of
the work, we address tools required to obtain two direct bijections of the recursive relationship. The first is the rank of partitions, which serves as a basis for Dyson’s mapping, with which we obtain an explicit direct bijection. The second tool is the principle of involution, which provides us with an iterative process to acquire another direct bijection. |
| Secondary keywords: |
absenteeism,;data analysis;data enrichment;machine learning;
key attribute analysis;computer science;computer and information science;computer science and mathematics;interdisciplinary studies;diploma;Bolniški dopust;Izostajanje od dela;Strojno učenje; |
| Type (COBISS): |
Bachelor thesis/paper |
| Study programme: |
1000407 |
| Embargo end date (OpenAIRE): |
1970-01-01 |
| Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
| Pages: |
1 spletni vir (1 datoteka PDF (42 str.)) |
| ID: |
25078357 |