doktorska disertacija
Mihaela Triglav (Author), Mojca Kosmatin Fras (Mentor), Anka Lisec (Thesis defence commission member), Fabio Crosilla (Co-mentor)

Abstract

Optimizacija metodologije obdelave in analiza natančnosti letalskega laserskega skeniranja pri zajemu geodetskih podatkov za lokalno prostorsko planiranje

Keywords

geodesy;doctoral thesis;remote sensing;lidar;laser scanning;accuracy analysis;local spatial planning;

Data

Language: English
Year of publishing:
Source: Ljubljana
Typology: 2.08 - Doctoral Dissertation
Organization: UL FGG - Faculty of Civil and Geodetic Engineering
Publisher: [M. Triglav Čekada]
UDC: 528.8:711(043.3)
COBISS: 4471393 Link will open in a new window
Views: 2223
Downloads: 592
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Optimization of the data processing methodology and accuracy analysis of airborne laser scanning data applied for local spatial planning
Secondary abstract: Aerial laser scanning (lidar) has become a widely used technique for spatial data production. Although various rigorous error models of aerial laser scanning already exist and examples of a-posteriori studies of aerial laser scanning data accuracies verified with field-work can be found in the literature, a simple measure to define a-priori error sizes is not available. In this work the aerial laser scanning error contributions are described in detail: the basic systematic error sources, the flight-mission-related error sources and the target-characteristic-related error sources. A review of the different error-source sizes is drawn from the literature in order to define the boundary conditions for each error size. Schenk’s geolocation equation is used as a basis for deriving a simplified a-priori error model. By changing different geometrical parameters the simulation of error sizes is made and the influence of different error sources is studied. This simplified error model enables a quick calculation and gives a-priori plausible values for the average and maximum error size, independent of the scan and heading angles as well as being independent of any specific aerial laser scanning system’s characteristics. Spatial data production by aerial laser scanning is also limited by acquisition precision. The acquisition precision is defined by spatial data products (in our case: geodetic data for local spatial planning). The acquisition precision of spatial data products also defines the minimum point density of aerial laser scanning. The minimum point density when applying aerial laser scanning as a stand-alone-technique is defined through minimal sampling density or Nyquist frequency. Through measuring penetration rate for different vegetation classes in the test area the total usable point density is defined. The a-priori aerial laser scanning accuracy and spatial data product precision defines when the aerial laser scanning can be applied in data extraction process in Slovenia. Through this the acquisition methodology for different geodetic data for local spatial planning production can be optimized. The review on legal acts defining the local spatial planning is given. The current and proposed data processing methodology for different geodetic data used for local spatial planning is described.
Secondary keywords: geodezija;disertacije;daljinsko zaznavanje;lidar;lasersko skeniranje;analiza natan cnosti;lokalno prostorsko planiranje;
URN: URN:NBN:SI
File type: application/pdf
Type (COBISS): Dissertation
Thesis comment: Univ. v Ljubljani, Fak. za gradbeništvo in geodezijo
Pages: XXII, 202 str.
Keywords (UDC): mathematics;natural sciences;naravoslovne vede;matematika;astronomy;astrophysics;space research;geodesy;astronomija;astrofizika;raziskovanje vesolja;geodesy;surveying;photogrammetry;remote sensing;cartography;geodezija;pregled terena;fotogrametrija;daljinsko zaznavanje;kartografija;remote sensing;the arts;recreation;entertainment;sport;umetnost;razvedrilo;zabava;šport;physical planning;regional;town and country planning;landscapes;parks;gardens;urejanje prostora;urejanje pokrajin;mest in podeželja;pokrajine;parki;vrtovi;principles and practice of physical planning;regional;town and country planning;načela in praksa urejanja prostora;urejanje pokrajin;mest in podeželja;
ID: 25410