diplomsko delo
Abstract
Družabna igra SET je igra s kartami. Osnovni element igre so karte z
različnimi lastnostmi, med katerimi išcemo po tri, ki izpolnjujejo SET pravilo.
Problem največjega krova išce največjo možno podmnožico afinega prostora
Z_3^n v odvisnosti od n, znotraj katere ne obstajajo trije kolinearni elementi.
Problem se za primer n = 4 lahko predstavi s SET kartami tako, da išcemo
čim večje število kart, med katerimi nobene tri ne izpolnjujejo SET pravila.
Naloga razišce in obravnava nekatere preproste pristope za reševanje problema najvčjega krova za poljuben n z uporabo kombinatoričnih in števnih
argumentov. Rezultat je metoda štetja hiperravnin, s katero določimo zgornje meje problema za dimenzije do n = 8 ter aplikacija za vizualizacijo afinih
prostorov dimenzij n = 2,3,4.
Keywords
družabna igra SET;SET;problem največjega krova;afina geometrija;vizualizacija;metoda štetja hiperravnin;računalništvo;matematika;interdisciplinarni študij;univerzitetni študij;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2025 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[J. Ilija] |
UDC: |
004:51:793.5/.7(043.2) |
COBISS: |
227773443
|
Views: |
96 |
Downloads: |
753 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
The card game SET and the cap set problem |
Secondary abstract: |
The SET card game consists of cards containing shapes with different prop
erties. The goal of the game is to find sets of three cards that fulfill the SET
rule. A cap set is a subset of the affine space Zn
3 where no three elements
are collinear. The cap set problem explores the maximum possible size of
cap sets with regards to the dimension n. In the particular case of n = 4
the affine space Z4
3 can be represented with the 81 cards that are contained
within the SET card game. The cap set problem in this instance searches
for the largest amount of cards possible, such that no three cards fulfill the
SET rule. This thesis aims to explore and present some simple and easy
to understand approaches for attempting to solve the cap set problem using
counting arguments and combinatorics. The main result of the thesis is the
hyperplane counting method, which gives us upper bounds for the problem
in dimensions up to n = 8 as well as an application that helps visualize the
considered affine spaces of dimensions n = 2,3,4 as well as their subsets. |
Secondary keywords: |
affine geometry;cap set problem;visualization;hyperplane counting method;computer science;computer and information science;computer science and mathematics;interdisciplinary studies;diploma; |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000407 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
1 spletni vir (1 datoteka PDF (40 str.)) |
ID: |
25931568 |