R. Aloisio (Author), Andrej Filipčič (Author), J. P. Lundquist (Author), S. U. Shivashankara (Author), Samo Stanič (Author), Serguei Vorobiov (Author), Danilo Zavrtanik (Author), Marko Zavrtanik (Author)

Abstract

The Pierre Auger Observatory, the world’s largest cosmic ray detector, plays a pivotal role in exploring the frontiers of physics beyond the standard model of particle physics. By the observation of ultra-high energy cosmic rays, Auger provides critical insights into two major scenarios: super heavy dark matter and Lorentz invariance violation. Super heavy dark matter, hypothesized to originate in the early universe, offers a compelling explanation for the dark matter problem and is constrained by Auger through searches for photons and neutrinos resulting from its decay. Lorentz invariance violations, motivated by quantum gravity theories implying deviations from fundamental symmetries, are probed by Auger through alterations of the particle dispersion relation and the energy thresholds of their interactions with astrophysical photons backgrounds.

Keywords

ultra-high-energy cosmic rays;Pierre Auger Observatory;UHE neutrinos;UHE photons;

Data

Language: English
Year of publishing:
Typology: 1.08 - Published Scientific Conference Contribution
Organization: UNG - University of Nova Gorica
UDC: 52
COBISS: 230058755 Link will open in a new window
ISSN: 1824-8039
Views: 352
Downloads: 4
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Pages: 8 str.
DOI: 10.22323/1.484.0022
ID: 26106972