Bjarni Pont (Author), Andrej Filipčič (Author), J. P. Lundquist (Author), S. U. Shivashankara (Author), Samo Stanič (Author), Serguei Vorobiov (Author), Danilo Zavrtanik (Author), Marko Zavrtanik (Author)

Abstract

The Auger Engineering Radio Array (AERA) at the Pierre Auger Observatory is an array of 153 radio-antenna stations that measure the 30−80 MHz radio emission produced in extensive air showers in the energy range between 0.1 and 10 EeV. It has been taking data for over a decade. In this contribution, we present the recent results of AERA. We show the measurements of the depths of the shower maxima (Xmax) using the radio footprint and using interferometry, demonstrating compatibility and competitiveness with the established fluorescence detection method. We also show the measurement of the stability of the radio signal over close to a decade determined using the Galactic radio background as a calibration source, demonstrating that a radio detector can be used to lower systematic uncertainties on the energy scale of, for example, fluorescence and water-Cherenkov detectors.

Keywords

ultra-high-energy cosmic rays;Pierre Auger Observatory;extensive air showers;radio emission;

Data

Language: English
Year of publishing:
Typology: 1.08 - Published Scientific Conference Contribution
Organization: UNG - University of Nova Gorica
UDC: 52
COBISS: 230650371 Link will open in a new window
ISSN: 1824-8039
Views: 395
Downloads: 5
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Pages: 8 str.
DOI: 10.22323/1.484.0049
ID: 26125308
Recommended works:
, no subtitle data available
, no subtitle data available
, testing the compatibility of the measurements at the Pierre Auger Observatory and the Telescope Array