magistrsko delo
Vid Ogrizek (Author), Igor Plazl (Mentor), Marjan Marinšek (Thesis defence commission member), Janez Cerkovnik (Thesis defence commission member)

Abstract

Sežiganje fosilnih goriv predstavlja več kot 85 % svetovnih potreb po energiji in povzroča znatne emisije ogljikovega dioksida, kar vodi v resne podnebne spremembe. Zmanjšanje teh emisij je ključni izziv, ki ga je mogoče rešiti z vrsto strategij, kot so zajemanje, shranjevanje in uporaba ogljika. Kljub razvoju tehnologij je ločevanje CO$_2$ energetsko zahtevno, predvsem zaradi njegove kemične stabilnosti. Namen magistrskega dela je bil zapis in vrednotenje zapisa matematičnega modela procesa zajemanja in mineralizacije CO$_2$ v koloni z mehurčki. Simulacije in eksperimentalni rezultati so omogočili podrobnejše razumevanje kinetičnih in procesnih parametrov v sistemih polšaržnega in kontinuirnega obratovanja. Matematični model je pokazal dobro skladnost z eksperimentalnimi podatki kljub manjšim odstopanjem, ki so posledica omejitev natančnosti meritev in postavljenim predpostavkam v modeliranju. Pri polšaržnem obratovanju smo ugotovili, da visoka koncentracija hidroksidnih ionov v začetni fazi pospeši reakcijo, medtem ko s padcem koncentracije v drugi fazi hitrost reakcije upade. Temperature so imele pomemben vpliv na kinetiko in ravnotežje reakcije, kar omogoča optimizacijo sistema. Pri kontinuirnem obratovanju so rezultati pokazali, da hitrost absorpcije v prvi fazi postane omejena s hitrostjo dovajanja CO$_2$, medtem ko višanje temperature vpliva na razpadanje natrijevega hidrogenkarbonata, kar spremeni ravnotežje in kapaciteto zajema CO$_2$. Eksperimentalni podatki so potrdili teoretične napovedi, vendar so bila odstopanja pogojena z vplivom eksperimentalnih pogojev. Modeliranje je izkazalo svojo uporabnost za napovedovanje obnašanja sistema in optimizacijo procesnih parametrov, medtem ko bi nadaljnje raziskave lahko obravnavale tudi kristalizacijo in hidrodinamske pogoje v reaktorju.

Keywords

zajem ogljikovega dioksida;prenos snovi;reakcije plin-kapljevina;kolone z mehurčki;absorpcija z reakcijo;matematično modeliranje;magistrska dela;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FKKT - Faculty of Chemistry and Chemical Technology
Publisher: [V. Ogrizek]
UDC: 66.02(043.2)
COBISS: 237645571 Link will open in a new window
Views: 53
Downloads: 17
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Mathematical modelling of carbonisation process
Secondary abstract: The combustion of fossil fuels accounts for more than 85% of the world’s energy demand and causes significant carbon dioxide emissions, leading to severe climate change. Reducing these emissions is a key challenge that can be addressed through various strategies, such as carbon capture, storage, and utilization. Despite the development of technologies, CO$_2$ separation remains energy-intensive, primarily due to its chemical stability. The aim of this master's thesis was to develop and evaluate a mathematical model of the CO$_2$ capture and mineralization process in bubble column reactor. Simulations and experimental results provided a deeper understanding of the kinetic and process parameters in both semi-batch and continuous operations. The mathematical model demonstrated good agreement with experimental data, despite minor deviations due to limitations in measurement accuracy and assumptions made during modelling. In semi-batch operation, we found that the high concentration of hydroxide ions in the initial phase accelerates the reaction, while the reaction rate decreases as the concentration drops in the second phase. Temperature played a significant role in the kinetics and equilibrium of the reaction, which enables system optimization. In continuous operation, the results showed that the absorption rate in the first phase becomes limited by the CO$_2$ feed rate, while increasing temperature affects the decomposition of sodium bicarbonate, altering the equilibrium and the CO$_2$ capture capacity. Experimental data confirmed the theoretical predictions, though deviations were linked to the influence of experimental conditions. The modelling proved useful for predicting system behaviour and optimizing process parameters, while future research could address challenges like crystallization and hydrodynamic conditions in the reactor.
Secondary keywords: carbon capture;mathematical modelling;reactive absorption;Ogljikov dioksid;Univerzitetna in visokošolska dela;
Type (COBISS): Master's thesis/paper
Study programme: 1000376
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za kemijo in kemijsko tehnologijo, smer Kemijsko inženirstvo
Pages: 1 spletni vir (1 datoteka PDF (46 str.))
ID: 26408008
Recommended works:
, diplomsko delo univerzitetnega študijskega programa
, no subtitle data available
, no subtitle data available