Drago Bokal (Author), Gašper Fijavž (Author), David Richard Wood (Author)

Abstract

Minorsko prekrižno število grafa ▫$G$▫ je najmanjše prekrižno število kakega grafa, ki vsebuje ▫$G$▫ kot minor. V prispevku pokažemo, da za vsak graf ▫$H$▫ obstaja konstanta ▫$c>0$▫, tako da ima vsak graf brez ▫$H$▫-minorja minorsko prekrižno število enako največ ▫$c|V(G)|$▫.

Keywords

matematika;teorija grafov;graf;grafovski minor;prepovedan minor;prekrižno število;minorsko prekrižno število;mathematics;graph theory;graph minor;excluded minor;crossing number;minor crossing number;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FRI - Faculty of Computer and Information Science
UDC: 519.17
COBISS: 14499417 Link will open in a new window
ISSN: 1077-8926
Views: 39
Downloads: 4
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Minorsko prekrižno število grafov s prepovedanim minorjem
Secondary abstract: The minor crossing number of a graph ▫$G$▫ is the minimum crossing number of a graph that contains ▫$G$▫ as a minor. It is proved that for every graph ▫$H$▫ there is a constant ▫$c$▫, such that every graph ▫$G$▫ with no ▫$H$▫-minor has minor crossing number at most ▫$c|V(G)|$▫.
Secondary keywords: matematika;teorija grafov;graf;grafovski minor;prepovedan minor;prekrižno število;minorsko prekrižno število;
Type (COBISS): Not categorized
Pages: R4 (13 str.)
Volume: ǂVol. ǂ15
Issue: ǂno. ǂ1
Chronology: 2008
ID: 67157
Recommended works:
, no subtitle data available
, no subtitle data available