Abstract
Standardna tranzitna funkcija delno urejene množice ▫$P$▫ je funkcija ▫$T_P$▫, ki vsakemu paru primerljivih elementov priredi interval med njima, za neprimerljiva elementa ▫$x,y$▫ pa je ▫$T_P(x,y) = \{x,y\}$▫. Na tri načine, tudi s prepovedanimi delno urejenimi podmnožicami, okarakteriziramo tiste delno urejene množice, v katerih standardna tranzitna funkcija sovpada s tranzitno funkcijo najkrajših poti njenega grafa pokritij-neprimerljivosti.
Keywords
matematika;teorija grafov;tranzitna funkcija;rangirana delno urejena množica;temeljni graf;geodetski interval;interval induciranih poti;mathematics;graph theory;transit function;ranked poset;underlying graph;geodesic interval;induced-path interval;
Data
Language: |
English |
Year of publishing: |
2009 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
UDC: |
519.17 |
COBISS: |
15155289
|
ISSN: |
1855-3966 |
Parent publication: |
Ars mathematica contemporanea
|
Views: |
65 |
Downloads: |
7 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Karakterizacija delno urejenih množic, katerih naravne tranzitne funkcije sovpadajo |
Secondary abstract: |
The standard poset transit function of a poset ▫$P$▫ is a function ▫$T_P$▫ that assigns to a pair of comparable elements the interval between them, while ▫$T_P(x,y) = {x,y}$▫ for a pair ▫$x$▫, ▫$y$▫ of incomparable elements. Posets in which the standard poset transit function coincides with the shortest-path transit function of its cover-incomparability graph are characterized in three ways, in particular with forbidden subposets. |
Secondary keywords: |
matematika;teorija grafov;tranzitna funkcija;rangirana delno urejena množica;temeljni graf;geodetski interval;interval induciranih poti; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 27-33 |
Volume: |
ǂVol. ǂ2 |
Issue: |
ǂno. ǂ1 |
Chronology: |
2009 |
ID: |
67709 |