diplomska naloga
Miha Pirih (Author), Jože Lopatič (Mentor), Bojan Majes (Thesis defence commission member), Franc Saje (Thesis defence commission member)

Abstract

Projektiranje betonskih konstrukcij s pomočjo modela z vezmi in razporami

Keywords

gradbeništvo;diplomska dela;UNI;razpore;vezi;vozlišča;palični mehanizem;območja diskontinuitet;stenasti nosilci;

Data

Language: Slovenian
Year of publishing:
Source: Ljubljana
Typology: 2.11 - Undergraduate Thesis
Organization: UL FGG - Faculty of Civil and Geodetic Engineering
Publisher: [M. Pirih]
UDC: 624.012.4(043.2)
COBISS: 5062241 Link will open in a new window
Views: 2464
Downloads: 785
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Design of concrete structures using the strut and tie model
Secondary abstract: My diploma focuses on deep beam dimensioning according to strut and tie model which is based on truss analogy. The model of strut and tie in detail describes struts, ties and nodes, introduces the instructions on mechanism design and checking according to SIST EN 1992-1-1: General rules and rules for buildings. Load-related stress distribution along the cross-section, which is obtained from linear elastic analysis and by using “Sofistik” software, is set as a tool for dimensioning crucial strut and ties joined in nodes. When an element bears the uniform distributed load, it is much harder to design a mechanism which would most accurately describe the deformation nature of construction than in the case of point load where the truss mechanism tends to stand out the moste when considering stress distribution along the cross-section to the support or area outside “D (discontinuity/disturbed) – regions”, resulting in computational examples displaying uniform distributed load. Deep beams with this kind of load distribution supported by numerous experiments call for the truss mechanism of trapezoid shapes with stabilization elements which are not displayed in most cases and this is mainly so because they are not crucial, but only used to reach the state of static determinacy of truss mechanism. Further on the two ways of mechanism design are presented in which case we choose the one with the truss altitude that comes closest possible to Leonhardt and/or Sofistik lever arm as well as to the reinforcement length left and right from intermediate support based on bending moment line and according to Leonhardt’s recommendations. The process is introduced with emphasis on detail and supported by equations from three computational examples.
Secondary keywords: civil engineering;graduation thesis;strut;tie;node;truss mechanism;discontinuity/disturbed areas;deep beam;
File type: application/pdf
Type (COBISS): Undergraduate thesis
Thesis comment: Univ. v Ljubljani, Fak. za gradbeništvo in geodezijo
Pages: XIV, 113 str., [93] str. pril.
Type (ePrints): thesis
Title (ePrints): Design of concrete structures using the strut and tie model
Keywords (ePrints): razpore;vezi;vozlišča;palični mehanizem;območja diskontinuitet;stenasti nosilci
Keywords (ePrints, secondary language): strut;tie;node;truss mechanism;discontinuity/disturbed areas;deep beam
Abstract (ePrints): V nalogi obravnavam dimenzioniranje stenastih nosilcev z modelom z vezmi in razporami, ki temelji na analogiji paličja. Oblikovanje modela je detajlno predstavljeno z opisi razpor, vezi in z vozlišči, s pravili tvorjenja paličnega mehanizma ter merodajnimi kontrolami, ki jih določa SIST EN 1992-1-1: Splošna pravila in pravila za stavbe. Obremenitvi pripadajoč potek napetosti po prerezu, dobljen z linearno elastično analizo, s programskim paketom »Sofistik«, uporabim za formiranje in dimenzioniranje merodajnih razpor in vezi, ki se stikujejo v vozliščih. Kadar je element obremenjen z linijsko obtežbo, je veliko težje izdelati mehanizem, ki čim bolje opisuje naravo odziva konstrukcije, kot pa v primeru točkovne obtežbe, kjer je mehanizem prenosa obtežbe največkrat očiten glede na potek napetosti po prerezu do podpor oziroma v območje elementa izven »D – območij«, zato so elementi v računskih primeri obremenjeni z zvezno linijsko obtežbo. Pri tako obremenjenem elementu je najprimernejši mehanizem prenosa obtežbe, kot kažejo tudi številni eksperimenti trapezne oblike s stabilizacijskimi diagonalami, le-te pa v večini primerov niso prikazane saj za dimenzioniranje niso merodajne, vendar pa so potrebne za doseganje statične določenosti paličnega mehanizma. V nadaljevanju sta predstavljena dva načina tvorjenja mehanizma, kjer je izbran tisti, ki se z višino paličja čim bolje približa Leonhardtovi in/ali Sofistikovi ročici ter dolžini armiranja levo in desno od vmesne podpore glede na momentno linijo in priporočili Leonhardta. Postopek je detajlno prikazan in z enačbami konkretiziran na šestih računskih primerih. IV
Abstract (ePrints, secondary language): My diploma focuses on deep beam dimensioning according to strut and tie model which is based on truss analogy. The model of strut and tie in detail describes struts, ties and nodes, introduces the instructions on mechanism design and checking according to SIST EN 1992-1-1: General rules and rules for buildings. Load-related stress distribution along the cross-section, which is obtained from linear elastic analysis and by using “Sofistik” software, is set as a tool for dimensioning crucial strut and ties joined in nodes. When an element bears the uniform distributed load, it is much harder to design a mechanism which would most accurately describe the deformation nature of construction than in the case of point load where the truss mechanism tends to stand out the moste when considering stress distribution along the cross-section to the support or area outside “D (discontinuity/disturbed) – regions”, resulting in computational examples displaying uniform distributed load. Deep beams with this kind of load distribution supported by numerous experiments call for the truss mechanism of trapezoid shapes with stabilization elements which are not displayed in most cases and this is mainly so because they are not crucial, but only used to reach the state of static determinacy of truss mechanism. Further on the two ways of mechanism design are presented in which case we choose the one with the truss altitude that comes closest possible to Leonhardt and/or Sofistik lever arm as well as to the reinforcement length left and right from intermediate support based on bending moment line and according to Leonhardt’s recommendations. The process is introduced with emphasis on detail and supported by equations from three computational examples.
Keywords (ePrints, secondary language): strut;tie;node;truss mechanism;discontinuity/disturbed areas;deep beam
ID: 8308990