Secondary language: |
English |
Secondary title: |
Determination of displacement geodetic network points, Frederiction approach |
Secondary abstract: |
This graduate thesis deals with the Fredericton approach for determining displacements in geodetic networks. In the introduction strain analysis is presented from a geodetic point of view. Special emphasis is placed on the problem of geodetic datum. It is followed by a theoretical explanation of the method in five steps: adjustment of observation for each epoch, preliminary identification of deformation models, estimation of deformation parameters, checking the deformation models and selecting the best one, graphical presentation of the selected deformation model. The method was applied to observations made in a relative geodetic network Pesje in two epochs. The network did not have defects of configuration but a datum defect was present from the use of the coordinate approach. The results differ slightly from the results obtained from the Delft, Hannover and Karlsruhe approaches and even more from the results obtained from the Munich approach. Compared to other methods, the Fredericton method is less automatic since it requires a human decision on the preliminary identification of deformation models. The advantage of this method is its general applicability, which can be achieved by adapting the method to specific situations within a geodetic network. |
Secondary keywords: |
graduation thesis;geodesy;deformation analysis;Frederiction method;deformation parameter;deformation model;Iterative Weighted Projection;geodetic datum;geodetic network Pesje; |
File type: |
application/pdf |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. Ljubljana, Fak. za gradbeništvo in geodezijo |
Pages: |
X, 49 str., pril. |
Type (ePrints): |
thesis |
Title (ePrints): |
Determination of Displacement Geodetic Network Points, Fredericton Approach |
Keywords (ePrints): |
deformacijska analiza;postopek Fredericton;deformacijski model;deformacijski parameter;iterativni postopek dodeljevanje uteži;geodetski datum;mreža Pesje |
Keywords (ePrints, secondary language): |
deformation analysis;Fredericton method;deformation
parameter;deformation model;Iterative Weighted
Projection;geodetic datum;geodetic network Pesje |
Abstract (ePrints): |
Diplomska naloga obravnava postopek Fredericton, ki je eden od postopkov deformacijske analize za določitev premikov točk v geodetski mreži. V uvodu so predstavljeni specifični vidiki določevanja premikov v geodeziji. Pri tem je poseben poudarek na vplivu geodetskega datuma na vektorje premikov, ki jih dobimo iz razlik izravnanih koordinat v dveh terminskih izmerah. Sledi teoretična izpeljeva in opis postopka v petih korakih: izravnava terminskih izmer, identifikacija možnih deformacijskih modelov, določitev deformacijskih parametrov za izbrane deformacijske modele, statistična ocena deformacijski modelov in izbira najboljšega, grafična predstavitev izbranega deformacijskega modela. Postopek smo uporabili na konkretnem primeru, na podatkih iz mreže Pesje. Obdelana so bila opazovanja iz dveh terminskih izmeri. V mreži ni bilo defekta konfiguracije, prisoten pa je bil defekt datuma, saj je bil uporabljen koordinatni pristop. Rezultati so se nekoliko razlikovali od rezultatov postopkov Delft, Karlsruhe, Hannover, bolj pa od rezultatov postopka München. Postopek Fredericton je v primerjavi z drugim postopki manj avtomatičen, saj zahteva geodetovo odločitev o možnih deformacijskih modelih. Prednost postopka je, da ga je možno prilagoditi specifičnim situacijam (npr. defekt konfiguracije mreže) tako, da je splošno uporaben. |
Abstract (ePrints, secondary language): |
This graduate thesis deals with the Fredericton approach for determining displacements in geodetic networks. In the introduction strain analysis is presented from a geodetic point of view. Special emphasis is placed on the problem of geodetic datum. It is followed by a theoretical explanation of the method in five steps: adjustment of observation for each epoch, preliminary identification of deformation models, estimation of deformation parameters, checking the deformation models and selecting the best one, graphical presentation of the selected deformation model. The method was applied to observations made in a relative geodetic network Pesje in two epochs. The network did not have defects of configuration but a datum defect was present from the use of the coordinate approach. The results differ slightly from the results obtained from the Delft, Hannover and Karlsruhe approaches and even more from the results obtained from the Munich approach. Compared to other methods, the Fredericton method is less automatic since it requires a human decision on the preliminary identification of deformation models. The advantage of this method is its general applicability, which can be achieved by adapting the method to specific situations within a geodetic network. |
Keywords (ePrints, secondary language): |
deformation analysis;Fredericton method;deformation
parameter;deformation model;Iterative Weighted
Projection;geodetic datum;geodetic network Pesje |
ID: |
8309811 |