Secondary language: |
English |
Secondary title: |
Study of Reissner beam under rolling disk |
Secondary abstract: |
For this degree paper we developed two-dimensional mathematical model of a rigid body rolling motion on deformable surface. Rigid body was modeled as a disk and deformable surface with geometrically non-linear beam. We derived equations of the rolling disk on know curve line, equations of dynamical response of Reissner beam under point load and equations of coupled rolling of disk on geometrical non-linear beam. Equations are discretized first with respect to the length of the beam following the finite-element method. Discretized equations are still differential equations with respect to the time. They were solved by the use of numerical methods of the Runge-Kutta family that are part of the commercial software Matlab. We developed programs for solving the governing equations and post-processing of the results. Use of these programs is presented for several numerical studies. |
Secondary keywords: |
civil engineering;graduation thesis;dynamics;rolling;Reissner beam;numerical methods for differential equations;Matlab;finite-element method;rolling of disk on beam-like structure; |
File type: |
application/pdf |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. v Ljubljani, Fak. za gradbeništvo in geodezijo |
Pages: |
XI, 98 str. |
Type (ePrints): |
thesis |
Title (ePrints): |
Study of reissner beam under rolling disk |
Keywords (ePrints): |
dinamika;kotaljenje brez podrsavanja;Reissnerjev nosilec;numerično reševanje diferencialnih enačb;programski paket Matlab;metoda končnih elementov;kotaljenje diska po linijskem nosilcu |
Keywords (ePrints, secondary language): |
dynamics;rolling;Reissner beam;numerical methods for differential equations;Matlab;finite-element method;rolling of disk on beam-like structure |
Abstract (ePrints): |
V diplomski nalogi smo izdelali ravninski matematični model kotaljenja togega telesa po deformabilni podlagi. Togo telo smo nadomestili z diskom, deformabilno podlago pa predstavlja elastičen linijski nosilec. Izpeljali smo enačbe kotaljenja diska brez podrsavanja po znani krivulji, enačbe dinamičnega odziva linijskega nosilca na točkovno obtežbo ter enačbe kotaljenja diska brez podrsavanja po linijskem nosilcu. Enačbe najprej diskretiziramo po kraju po metodi končnih elementov. Tako diskretizirane enačbe so še vedno diferencialne enačbe po času. Rešujemo jih z numeričnimi metodami družine Runge-Kutta, ki so že vgrajene v programski paket Matlab. Napisali smo računalniške programe, ki omogočajo numerično reševanje teh enačb. Uporaba programov je prikazana na različnih primerih, rezultate pa prikazujemo s pomočjo grafov in animacij. |
Abstract (ePrints, secondary language): |
For this degree paper we developed two-dimensional mathematical model of a rigid body rolling motion on deformable surface. Rigid body was modeled as a disk and deformable surface with geometrically non-linear beam. We derived equations of the rolling disk on know curve line, equations of dynamical response of Reissner beam under point load and equations of coupled rolling of disk on geometrical non-linear beam. Equations are discretized first with respect to the length of the beam following the finite-element method. Discretized equations are still differential equations with respect to the time. They were solved by the use of numerical methods of the Runge-Kutta family that are part of the commercial software Matlab. We developed programs for solving the governing equations and post-processing of the results. Use of these programs is presented for several numerical studies. |
Keywords (ePrints, secondary language): |
dynamics;rolling;Reissner beam;numerical methods for differential equations;Matlab;finite-element method;rolling of disk on beam-like structure |
ID: |
8312235 |