Abstract
Naj bo ▫$R$▫ polprakolobar in ▫$f \colon R \to R$▫ aditivna preslikava, ki zadošča ▫$[f(x),x^2] = 0$▫ za vse ▫$x \in R$▫. V članku je dokazano, da je potem ▫$[f(x),x] = 0$▫ za vse ▫$x \in R$▫. S pomočjo tega rezultata lahko dokažemo naslednje. Naj bo ▫$R$▫ polprakolobar in ▫$D,G \colon R \to R$▫ odvajanji. Predpostavimo, da je ▫$[D^2(x) + G(x),x^2] = 0$▫ za vse ▫$x \in R$▫. Potem ▫$D$▫ in ▫$G$▫ slikata ▫$R$▫ v njegov center.
Keywords
algebra;prakolobar;polprakolobar;odvajanje;centralizirajoče preslikave;komutirajoče preslikave;poševno-komutirajoča preslikava;prime ring;semiprime ring;derivation;centralizing mapping;commuting mapping;skew-commuting mapping;
Data
Language: |
English |
Year of publishing: |
2011 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
UDC: |
512.552 |
COBISS: |
15884633
|
ISSN: |
0033-3883 |
Views: |
66 |
Downloads: |
5 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Nekaj rezultatov o aditivnih preslikavah in odvajanjih na polprakolobarjih |
Secondary abstract: |
Let ▫$R$▫ be a 2-torsion free semiprime ring and let ▫$f \colon R \to R$▫ be an additive mapping satisfying the relation ▫$[f(x),x^2] = 0$▫ for all ▫$x \in R$▫. We prove that in this case ▫$[f(x),x] = 0$▫ holds for all ▫$x \in R$▫. This result makes it possible to prove the following result. Let ▫$R$▫ be a 2-torsion free semiprime ring and let ▫$D,G \colon R \to R$▫ be derivations. Suppose that the relation ▫$[D^2(x) + G(x),x^2] = 0$▫ holds for all ▫$x \in R$▫. Then ▫$D$▫ and ▫$G$▫ both map $R$ into its center. |
Secondary keywords: |
algebra;prakolobar;polprakolobar;odvajanje;centralizirajoče preslikave;komutirajoče preslikave;poševno-komutirajoča preslikava; |
Type (COBISS): |
Not categorized |
Pages: |
str. 575-581 |
Volume: |
ǂVol. ǂ78 |
Issue: |
ǂno. ǂ3-4 |
Chronology: |
2011 |
ID: |
8723759 |