Maja Fošner (Author), Joso Vukman (Author)

Abstract

In this article we prove the following result. Let ▫$n \ge 1$▫ be some fixed integer, and let ▫$R$▫ be a prime ring with ▫$2n \le char(R) \ne 2$▫. Suppose there exists an additive mapping ▫$T: R \to R$▫ satisfying the relation ▫$T(x^{2n+1}) = \sum_{i=1}^{2n+1}(-1)^{i+1} x^{i-1} T(x)x^{2n+1-i}$▫ for all ▫$x \in R$▫. In this case, ▫$T$▫ is of the form ▫$4T(x) = qx + xq$▫ for all ▫$x \in R$▫, where ▫$q$▫ is some fixed element from the symmetric Martindale ring of quotients. This result makes it possible to solve some functional equations in prime rings with involution which are related to bicircular projections.

Keywords

funkcijska identiteta;odvajanje;bicirkularna projekcija;jordansko trojno odvajanje;prakolobar;kolobar z involucijo;polprakolobar;bicircular projection;derivation;functional identity;Jordan tripple derivation;prime ring;ring with involution;semiprime ring;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
UDC: 512.552.3
COBISS: 18550536 Link will open in a new window
ISSN: 0092-7872
Views: 1005
Downloads: 83
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Nekatere funkcijske enačbe na kolobarjih
Secondary keywords: funkcijska identiteta;odvajanje;bicirkularna projekcija;jordansko trojno odvajanje;prakolobar;kolobar z involucijo;polprakolobar;
URN: URN:SI:UM:
Pages: str. 2647-2658
Volume: ǂVol. ǂ39
Issue: ǂno ǂ7
Chronology: 2011
ID: 8723784
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, no subtitle data available