Ajda Fošner (Author)

Abstract

Let ▫$H$▫ be an infinite-dimensional almost separable Hilbert space. We show that every local automorphism of ▫$\mathscr{B}(H)$▫, the algebra of all bounded linear operators on a Hilbert space ▫$H$▫, is an automorphism.

Keywords

matematika;teorija operatorjev;avtomorfizem;lokalni avtomorfizem;operatorska algebra na Hilbertovem prostoru;mathematics;operator theory;automorphism;local automorphism;algebra of operators on a Hilbert space;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM PEF - Faculty of Education
UDC: 517.983.2
COBISS: 14135385 Link will open in a new window
ISSN: 0011-4642
Views: 86
Downloads: 12
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary keywords: matematika;teorija operatorjev;avtomorfizem;lokalni avtomorfizem;operatorska algebra na Hilbertovem prostoru;
Type (COBISS): Not categorized
Pages: str. 981-986
Volume: ǂVol. ǂ56
Issue: ǂno. ǂ3
Chronology: 2006
ID: 8724184