diplomsko delo
Abstract
V diplomskem delu so predstavljeni grafi Sierpińskijevega tipa, in sicer grafi Sierpińskega S(n, k), grafi trikotnikov Sierpińskega S_n, regularni grafi Sierpińskega S^+(n, k) in S^++(n, k) in posplošeni grafi trikotnikov Sierpińskega S[n, k]. Prikazane so natančne risbe grafov S(n, k), S^+(n, k) in S^++(n, k). Za S^+(n, k) in S^++(n, k) je dokazano, da so te risbe optimalne. Določeno je število po povezavah disjunktnih Hamiltonovih poti in Hamiltonovih ciklov v grafih S(n, k), S^+(n, k) in S^++(n, k). Dokazano je, da so grafi S[n, k] Hamiltonovi. Raziskana je vozliščna linearna pogozdenost grafov S(n, k), S^+(n, k), S^++(n, k) in S[n, k]. Podano je še {P_r}-prosto kromatično število grafov S_n, S(n, k), S^+(n, k) in S^++(n, k), za r % {3, 4}.
Keywords
matematika;grafi Sierpińskega;grafi trikotnikov Sierpińskega;prekrižno število;hamiltonskost;vozliščna linearna pogozdenost;diplomska dela;
Data
Language: |
Slovenian |
Year of publishing: |
2013 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UM FNM - Faculty of Natural Sciences and Mathematics |
Publisher: |
[A. Šereg] |
UDC: |
51(043.2) |
COBISS: |
20061448
|
Views: |
1341 |
Downloads: |
104 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Some generalizations of Sierpiński graphs |
Secondary abstract: |
In this graduation thesis Sierpiński-like graphs, namely Sierpiński graphs S(n, k), Sierpiński gasket graphs S_n, regular Sierpiński graphs S^+(n, k) and S^++(n, k) and generalized Sierpiński gasket graphs S[n, k] are presented. Explicit drawings of graphs S(n, k), S^+(n, k) and S^++(n, k) are shown and proved to be optimal for S^+(n, k) and S^++(n, k). The numbers of edge disjoint Hamiltonian paths and Hamiltonian cycles in S(n, k), S^+(n, k) and S^++(n, k) are determined. Graphs S[n, k] are proven to be Hamiltonian. Vertex linear arboricity of S(n, k), S^+(n, k), S^++(n, k) and S[n, k] is studied. {Pr}-free cromatic number of S_n, S(n, k), S^+(n, k) and S^++(n, k) for r % {3, 4} is given. |
Secondary keywords: |
Sierpiński graph;Sierpiński gasket graph;regular Sierpiński graph;generalized Sierpiński gasket graph;crossing number;Hamiltonicity;path t-coloring;vertex linear arboricity;{P_r}-free chromatic number; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Undergraduate thesis |
Thesis comment: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Pages: |
IX, 63 f. |
ID: |
8726882 |