magistrsko delo
Jerneja Mašera (Author), Dejan Dragan (Mentor)

Abstract

Pristanišča severnega Jadrana so bila zaradi geoprometne lege pogosto raziskovana, vendar raziskav povezanih z vplivom gospodarstva na njihovo razvitost ni mogoče zaslediti. Povezano s tem je bil glavni namen raziskave ugotoviti vpliv eksogenih spremenljivk štirih določenih področij, ki so jih predstavljali makroekonomski kazalniki na kontejnerski pretovor koprskega, tržaškega in beneškega pristanišča. Multivariatna statistična analiza je bila narejena z uporabo dveh analiz - z analizo glavnih komponent in faktorsko analizo, pri čemer rezultati kažejo na močno povezanosti vseh eksogenih spremenljivk. Z analizo glavnih komponent smo pridobili šest glavnih komponent, z izvedbo faktorske analize pa sedem faktorjev, pri čemer so nove spremenljivke med seboj neodvisne. Te spremenljivke so bile nato uporabljene v multipli linearni regresiji kot neodvisne spremenljivke, z namenom ugotavljanja njihovega vpliva na kontejnerski pretovor pristanišč. Kazalniki regresijske analize so pokazali močan vpliv neodvisnih spremenljivk na kontejnerski pretovor pristanišč, pri čemer lahko v primeru koprskega in tržaškega pristanišča govorimo o bistveno močnejši medsebojni odvisnosti kot v primeru pristanišča Benetke. Pridobljeni rezultati so pokazatelj močne povezanosti pretovora severnojadranskih pristanišč z gospodarstvom področij, v katerih se le-ta nahajajo, in zalednih področij. Menimo, da pridobljeni rezultati predstavljajo referenčno točko nadaljnjih statističnih analiz, povezanih z napovedovanjem pretovora.

Keywords

analiza glavnih komponent;faktorska analiza;linearna regresija;makroekonomski kazalniki;pretovor kontejnerjev;severnojadranska pristanišča;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UM FL - Faculty of Logistics
Publisher: [J. Mašera]
UDC: 656.6
COBISS: 512589629 Link will open in a new window
Views: 1719
Downloads: 233
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Multivariate statistical analysis of the North Adriatic ports throughput
Secondary abstract: There are a lot of studies related to the North Adriatic ports due to their geo-transport location. Best to the authors knowledge, there are not a lot of studies related to the impact of the economy on the ports development. Hence, our research focuses on the influence of exogenous variables, which are represented by the macroeconomic indicators of four major areas, on the container throughput of three selected ports: Koper, Trieste and Venice. In the scope of the multivariate statistical analyses two separate studies were applied - a principal component analysis and a factor analysis. The results indicate a strong connection between all exogenous variables. Based on the principal component analysis we derived six principal components and within the factor analysis seven different factors, where both are mutually independent. These variables were then used in a multiple linear regression, as independent variables, in order to determine their impact on ports container throughput. Obtained indicators based on the regression analysis show a strong impact of independent variables on the ports container throughput, wherein mutual correlation is significantly stronger in case of port of Koper and port of Trieste than in the case of port of Venice. The results also indicate strong connection of North Adriatic ports throughput with the economy of areas, in which ports are located, and hinterland areas. We think that the obtained results should represent a reference point for further statistical analyses related to the forecasting of port throughput.
Secondary keywords: Principal component analysis;Factor analysis;linear regression;macroeconomic indicators;container throughput;North Adriatic ports;
URN: URN:SI:UM:
Type (COBISS): Master's thesis/paper
Thesis comment: Univ. v Mariboru, Fak. za logistiko
Pages: X, 140 f., 19 f. pril.
ID: 8730156