diplomsko delo
Marko Ambrožič (Author), Zoran Bosnić (Mentor)

Abstract

Profiliranje uporabnikov postaja vse bolj pomembna tema pri razvoju spletnih strani, saj omogoča zagotavljanje boljše uporabniške izkušnje z ugotavljanjem uporabnikovih interesov. V tem delu se ukvarjamo z dinamično izbiro metod profiliranja uporabnikov. Cilj je uporabiti metode strojnega učenja in zgraditi učni model, ki bo znal kar najbolje kombinirati metode profiliranja in tako ustvariti kombinirano metodo profiliranja, uspešnejšo od vsake posamezne metode, ki smo jih uporabili pri učenju. Pokazali smo, da je kombiniranje profilirnih algoritmov z uporabo strojnega učenja lahko močno orodje pri izboljšavi uspešnosti profiliranja. Pokazali smo tudi, da je uporaba dinamične izbire metod smiselna v primeru, ko so razlike med posameznimi algoritmi profiliranja večje in so tako tudi možnosti za izboljšave večje.

Keywords

dinamična izbira metod;profiliranje uporabnikov;strojno učenje;računalništvo;računalništvo in informatika;univerzitetni študij;diplomske naloge;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [M. Ambrožič]
UDC: 004.85(043.2)
COBISS: 1536078275 Link will open in a new window
Views: 1550
Downloads: 342
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Dynamic method selection for profiling web users
Secondary abstract: User profiling is becoming an increasingly important subject in the field of web development as it enables improving the user experience through learning the users interests. In this study we examine dynamic selection of web user profiling methods. Our goal is to use machine learning methods to build a learning model that predicts the most successful combined profiling method, which is expected to be significantly better from each individual method. We have shown that combining of profiling methods using machine learning can be a powerful tool when looking for a way of improving the accuracy of web user profiles. We have also shown that dynamic selection is most effective when differences between profiling methods are relatively large and therefore providing room for improvement.
Secondary keywords: dynamic method selection;user profiling;machine learning;computer science;computer and information science;diploma;
File type: application/pdf
Type (COBISS): Bachelor thesis/paper
Study programme: 1000468
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 34 str.
ID: 8739351