diplomsko delo
Andrej Pangerčič (Author), Gašper Jaklič (Mentor)

Abstract

Skoraj vsak matematični problem, ki ga ne moremo več rešiti na roko zaradi naše omejene hitrosti reševanja, smo primorani rešiti z računalnikom. Za začetek moramo predstaviti problem v računalniški obliki in nato nad njim izvršiti neko matematično operacijo v obliki algoritma. Pri tem si želimo imeti algoritme, ki se izvajajo v realnem času. Funkcije največkrat aproksimiramo z interpolacijskimi polinomi, s katerimi najlažje in hitro računamo. Kaj kmalu ugotovimo, da osnovna uporaba interpolacije ni primerna, saj povzroča prevelike napake. V tem diplomskem delu se bomo posvetili Čebiševi vrsti, ki v praksi daje zelo dobre aproksimacije za lepe funkcije. Pogledali si bomo, kako je takšna aproksimacija implementirana v odprtokodnem programskem orodju Chebfun. Na koncu bomo pokazali nekaj uporabnih primerov, ki jih največkrat rešujemo na računalniku in njihovo reševanje s pomočjo programskega okolja.

Keywords

polinom;aproksimacija;interpolacija;Čebiševa vrsta;Matlab;Chebfun;računalništvo;računalništvo in informatika;univerzitetni študij;diplomske naloge;interdisciplinarni študij;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FMF - Faculty of Mathematics and Physics
Publisher: [A. Pangerčič]
UDC: 004.42(043.2)
COBISS: 1536142787 Link will open in a new window
Views: 0
Downloads: 0
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Software package Chebfun.
Secondary abstract: Almost every mathematical problem that can not be solved manually due to our limited speed of calculating, ​we need to solve with the computer. We first present the problem in an electronic form and then execute a mathematical operation in a form of an algorithm that runs in real time. Usually we can approximate functions by interpolation with polynomials, because ​the polynoms are the easiest and fastest to compute. A significant drawback of this approach is in that large errors can arise thereby. To overcome this problem we in this thesis investigate Chebyshev series which in practice give a very good approximation for smooth functions. In particular we examine an approximation implemented in the open source software tool Chebfun. ​At the end we present a couple of examples used commonly in problem solving with the computer and solve them with the software tool.
Secondary keywords: polynom;approximation;interpolation;Chebyshev series;Matlab;Chebfun;computer science;computer and information science;diploma;interdisciplinary studies;
File type: application/pdf
Type (COBISS): Bachelor thesis/paper
Study programme: 1000407
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 37 str.
ID: 8739478