diplomsko delo
Nejc Vesel (Author), Luka Šajn (Mentor)

Abstract

V tej diplomski nalogi želimo preizkusiti metodo, ki nam omogoči, da s pomočjo računalniške analize sliko pripišemo določenemu slikarju. Testiramo dva načina. Pri prvem pristopu želimo identificirati slikarja glede na način, s katerim preslika človeške obrazne poteze iz fotografije na naslikan portret. Zanima nas, ali so razlike v obraznih razmerjih na fotografiji in sliki statistično pomembne. Pri drugi metodi vsako sliko opišemo z vektorjem značilnic. Značilnice obsegajo barvo, teksturo in dimenzije slike, katerih kombinacija tvori vektor značilnic. Princip testiramo na 3 slikarjih z različnimi stili. Za vsakega od njih imamo množico desetih testnih slik. Zanima nas, ali lahko z gručenjem sliko pravilno pripišemo slikarju samo na podlagi teh vektorjev značilnic.

Keywords

računalniški vid;umetnost;detekcija obraza;primerjava umetniških slik;klasifikacija;klasifikacija umetnikov;računalništvo;računalništvo in informatika;računalništvo in matematika;univerzitetni študij;diplomske naloge;interdisciplinarni študij;

Data

Language: Slovenian
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [N. Vesel]
UDC: 004.932:75(043.2)
COBISS: 1536458179 Link will open in a new window
Views: 1711
Downloads: 382
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Artwork classification based on image features
Secondary abstract: In this thesis we are trying to discover a method that allows us to attribute a painting to a particular artist with the help of image analysis. We are testing two methods. In the first one, we are trying to identify the style of a painter by analysing the way in which he translates a human face from a photograph into a painting. We are testing whether the differences on facial proportions in photographs and paintings are statistically significant. With the other method, we describe every painting with a set of features. The features look at the image color, texture and dimensions to form a feature vector. We test this on 10 pictures for each of the 3 painters with different styles. We are trying to test, whether we can correctly attribute these paintings to a painter just with these feature vectors.
Secondary keywords: computer vision;art;face detection;artwork comparison;classification;artist classification;computer science;computer and information science;computer science and mathematics;diploma;interdisciplinary studies;
File type: application/pdf
Type (COBISS): Bachelor thesis/paper
Study programme: 1000407
Embargo end date (OpenAIRE): 1970-01-01
Thesis comment: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Pages: 52 str.
ID: 8889380