diplomsko delo
Abstract
V tej diplomski nalogi želimo preizkusiti metodo, ki nam omogoči, da s pomočjo računalniške analize sliko pripišemo določenemu slikarju. Testiramo dva načina. Pri prvem pristopu želimo identificirati slikarja glede na način, s katerim preslika človeške obrazne poteze iz fotografije na naslikan portret. Zanima nas, ali so razlike v obraznih razmerjih na fotografiji in sliki statistično pomembne.
Pri drugi metodi vsako sliko opišemo z vektorjem značilnic. Značilnice obsegajo barvo, teksturo in dimenzije slike, katerih kombinacija tvori vektor značilnic. Princip testiramo na 3 slikarjih z različnimi stili. Za vsakega od njih imamo množico desetih testnih slik. Zanima nas, ali lahko z gručenjem sliko pravilno pripišemo slikarju samo na podlagi teh vektorjev značilnic.
Keywords
računalniški vid;umetnost;detekcija obraza;primerjava umetniških slik;klasifikacija;klasifikacija umetnikov;računalništvo;računalništvo in informatika;računalništvo in matematika;univerzitetni študij;diplomske naloge;interdisciplinarni študij;
Data
| Language: |
Slovenian |
| Year of publishing: |
2015 |
| Typology: |
2.11 - Undergraduate Thesis |
| Organization: |
UL FRI - Faculty of Computer and Information Science |
| Publisher: |
[N. Vesel] |
| UDC: |
004.932:75(043.2) |
| COBISS: |
1536458179
|
| Views: |
1711 |
| Downloads: |
382 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary title: |
Artwork classification based on image features |
| Secondary abstract: |
In this thesis we are trying to discover a method that allows us to attribute a painting to a particular artist with the help of image analysis. We are testing two methods. In the first one, we are trying to identify the style of a painter by analysing the way in which he translates a human face from a photograph into a painting. We are testing whether the differences on facial proportions in photographs and paintings are statistically significant.
With the other method, we describe every painting with a set of features. The features look at the image color, texture and dimensions to form a feature vector. We test this on 10 pictures for each of the 3 painters with different styles. We are trying to test, whether we can correctly attribute these paintings to a painter just with these feature vectors. |
| Secondary keywords: |
computer vision;art;face detection;artwork comparison;classification;artist classification;computer science;computer and information science;computer science and mathematics;diploma;interdisciplinary studies; |
| File type: |
application/pdf |
| Type (COBISS): |
Bachelor thesis/paper |
| Study programme: |
1000407 |
| Embargo end date (OpenAIRE): |
1970-01-01 |
| Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
| Pages: |
52 str. |
| ID: |
8889380 |