diplomsko delo
Abstract
Matrično faktorizacijo, ki se povezuje s postopkom zlivanja podatkov, uporabljamo za odkrivanje vzorcev oziroma skupin v podatkih. Faktorizirani model preslika podatke v nižje-dimenzionalen prostor, jih tako skrči in odpravi del šuma. Tovrstni modeli so zato navadno bolj robustni in imajo višjo
napovedno točnost. Pri nevronskih mrežah bi tako znali reševati problem prevelike prilagojenosti podatkom (angl. overfitting) in pridobili pri generalizaciji. V nalogi smo preučili, ali s hkratno faktorizacijo parametrov nevronske mreže, ki jih je možno predstaviti z več matrikami, odstranimo (porežemo) nepomembne povezave in tako izboljšamo napovedno točnost mreže. Predlagani
postopek rezanja smo preizkusili na navadnih in globokih nevronskih mrežah. Po uspešnosti je primerljiv z ostalimi najuspešnejšimi standardnimi pristopi rezanja nevronskih mrež.
Keywords
nevronske mreže;matrična faktorizacija;rezanje;računalništvo;računalništvo in informatika;univerzitetni študij;diplomske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2015 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FRI - Faculty of Computer and Information Science |
Publisher: |
[T. Roštan] |
UDC: |
004.85(043.2) |
COBISS: |
1536482243
|
Views: |
1010 |
Downloads: |
162 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Pruning neural network using matrix factorization |
Secondary abstract: |
Matrix factorization and the procedure of data fusion are used to detect patterns in data. The factorized model maps the data to a low-dimensional space, therefore shrinking it and partially eliminating noise. Factorized models
are thus more robust and have a higher predictive accuracy. With this procedure we could solve the problem of overfitting in neural networks and improve their ability to generalize. Here, we report on how to simultaneously
factorize the parameters of a neural network, which can be represented with multiple matrices, to prune not important connections and therefore improve predictive accuracy. We report on empirical results of pruning normal and
deep neural networks. The proposed method performs similarly to the best standard approaches to pruning neural networks. |
Secondary keywords: |
neural networks;matrix factorization;pruning;computer science;computer and information science;diploma; |
File type: |
application/pdf |
Type (COBISS): |
Bachelor thesis/paper |
Study programme: |
1000468 |
Embargo end date (OpenAIRE): |
1970-01-01 |
Thesis comment: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Pages: |
52 str. |
ID: |
8900524 |