magistrsko delo
Abstract
Ločilnik je naprava, katera je namenjena za vklapljanje ali izklapljanje tokovno neobremenjenih tokokrogov, pri čemer je njegova osnovna funkcija v elektroenergetskem omrežju vidna ločitev delov pod napetostjo od delov v breznapetostnem stanju. Poudarek naloge je bil zmodelirati numerični model sistemskega ločilnika v programskem okolju EleFanT3D, ki je identičen kot realni model z manjšimi nepomembnimi deviacijami, pri čemer smo upoštevali vse relevantne veličine kot so pri realnem modelu. Temeljni izračun temperaturnega polja vzdolž dolžine ločilnika je temeljil na osnovi umeritve temperaturnih koeficientov s pomočjo metode za brez kontaktno merjenje temperature (termografije), ki je bila izvedena na dejanskem modelu sistemskega ločilnika. V računskem postopku analize rezultatov so podani grafični rezultati padcev napetosti, tokovne gostote in izgubne moči ter s poudarkom na temperaturnih poljih za različne tokovne obremenitve ločilnika, s preskusnim in obratovalnim tokom ter maksimalnim obratovalnim tokom.
Keywords
elektroenergetska omrežja;stikališča;preklapljanje;ločilnik;temperaturno polje;termografija;magistrske naloge;
Data
Language: |
Slovenian |
Year of publishing: |
2015 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
J. Plajnšek |
UDC: |
621.316.3(043.2) |
COBISS: |
19353110
|
Views: |
1198 |
Downloads: |
131 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
THERMAL CONDITIONS ON 110 kV DISCONNECTOR |
Secondary abstract: |
A disconnector is a device for switching no-load current circuits on and off, while its main function in the power network is to visibly distinguish components under voltage from voltage-free ones. The focus of the thesis was to model a numerical model of the system disconnector in the EleFanT3D software environment, which is identical to the real model with only minor insignificant variations where all the relevant quantities have been considered, as this is the case for real models. The basic calculation of the temperature field along the length of the disconnector was based on calibrating temperature factors by way of contactless temperature measurement (thermography) which was performed on the actual model of the system disconnector. In the calculation procedure involving result analysis, the graphical results of voltage drops, current density and loss of power are shown with an emphasis on temperature fields for different current loads of the disconnectors by using test and operating currents as well as the maximum operating current. |
Secondary keywords: |
power networks;switching;disconnector;temperature field;thermal conductivity;thermography; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Elektrotehnika |
Pages: |
XV, 101 f. |
ID: |
9054350 |