diplomska naloga
Abstract
V diplomski nalogi sem predstavil postopek dimenzioniranja armirano betonskega nosilca. Odpornost
betonskega prereza je odvisna od geometrije prereza, vrste betona in količine armature. V praksi
pogosto določene parametre vnaprej izberemo in na njihovi osnovi določimo ostale karakteristike. Ta
način projektiranja omogoča hitro reševanje problema, ne zagotavlja pa optimalne cene. Če bi želeli
poiskati najcenejšo možnost, bi morali za vsak trdnostni razred betona, pri različnih geometrijskih
karakteristikah, izračunati potrebno količino armature in med dobljenimi rezultati poiskati najcenejšo
možnost. Postopek računanja je obsežen, ker je potrebno narediti veliko ponovitev. V sklopu svoje
diplomske naloge sem izdelal aplikacijo v programskem okolju Excel, ki vsebuje modul Solver –
Reševalec, s katerim lahko v množici armiranobetonskih prečnih prerezov poiščemo najcenejši
element. Uporabnik poda trdnostne razrede betona in cene materialov ter omeji geometrijske lastnosti.
Na podlagi izbranih parametrov program poišče najcenejšo rešitev. Rezultati programa so trdnostni
razred betona in geometrijske lastnosti prereza: višina, širina, količina armature. V diplomski nalogi
nisem upošteval cene opaža pri optimalnem dimenzioniranju elementa.
Omejil sem se na osno-upogibno obremenjen element. Statični model je prostoležeči nosilec. Program
je možno nadgraditi za druge modele konstrukcij. Upoštevati moramo predpostavko, da upogibni
moment prevladuje in imamo veliko ekscentričnost. Na podlagi obremenitev določimo le vzdolžno
armaturo, ne pa tudi strižne. Prerez dimenzioniramo po standardu Evrokod 2. Upoštevajoč navedeni
standard, dokazujemo nosilnost prereza v mejnem stanju nosilnosti in mejnem stanju uporabnosti.
Na podlagi izvedenih primerov sem ugotovil, da je za prostoležeče nosilce, katerih prečni prerezi so
obremenjeni z velikimi upogibnimi momenti, najboljša rešitev uporaba betonov trdnostnih razredov
med C40 in C50.
Keywords
diplomska naloga;gradbeništvo;betonski nosilec;pravokotni prerez;dimenzioniranje;mejno stanje nosilnosti;mejno stanje uporabnosti;
Data
Language: |
Slovenian |
Year of publishing: |
2015 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FGG - Faculty of Civil and Geodetic Engineering |
Publisher: |
[B. Nenad] |
UDC: |
624.072.2(043.2) |
COBISS: |
7209569
|
Views: |
2655 |
Downloads: |
540 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Optimal Design of Reinforced Concrete Beam with respect to bending moment and axial force |
Secondary abstract: |
The thesis paper describes the procedure of designing reinforced concrete sections. Cross section
resistance depends on the number of reinforced bars, section dimensions and concrete strength.
Usually we choose the type of concrete, the geometry of the section and then determine the number of
reinforced bars. This is the fastest way of designing, but not the cheapest. In order to look for the most
economical solution, it is necessary to calculate all the parameters for all types of concretes. This way
is more complicated and requires more time. Part of my graduation thesis is in Excel, which has an
integrated solver application. With this add-in we can find the best solution with less difficulty. Users
enter the types of concrete and their prices, limit values of the geometry parameters and loads. Using
nonlinear functions to solve equations, solver gives results for every type of concrete, and the number
of reinforced bars and section dimensions.
The static model is a simply supported beam. It is possible to modify the program for different types
of constructions. The beam is loaded with an axial force and bending moment. The assumption is: the
bending moment is significantly larger than the axial force. This state of stress causes large
eccentricity. The computer program calculates only longitudinal reinforcement, but not the shear
reinforcement. The design procedure is explained in the standard Eurocode 2. It is required to check
the ultimate and serviceability limit state. Based on the obtained results, the conclusion is that for
construction loaded with a large bending moment and a small axial force, the most economical
concrete is between C40 and C50. |
Secondary keywords: |
graduation thesis;civil engineering;concrete beam;rectangual cross-section;desin;ultimate limit state;serviceability limit state; |
File type: |
application/pdf |
Type (COBISS): |
Bachelor thesis/paper |
Thesis comment: |
Univ. v Ljubljani, Fak. za gradbeništvo in geodezijo |
Pages: |
VII, 34 str., [3] str. pril. |
ID: |
9056135 |