mechanisms, pathways and environmental aspects

Abstract

The study explores the potential of immobilized TiO2-based zeolite composite photocatalyst (TiO2-FeZ) made of commercial AEROXIDE TiO2 P25 and iron-exchanged zeolite of ZSM5 type (FeZ), for solar assisted treatment of diclofenac (DCF), pharmaceutical included in the ‘‘watch list” during last prioritization in water legislation by EU. In this study the efficiency of applied photocatalytic treatment, solar/TiO2-FeZ/H2O2, of DCF water solution was evaluated on basis of DCF removal and conversion kinetics, as well as the changes of common parameters for assessing water quality. Hence, the changes in the removal and mineralization of overall organic content, biodegradability, toxicity to Vibrio fischeri, dechlorination of DCF and its formed by-products, were monitored during the treatment. The obtained data were correlated with the evolution of DCF by-products, identified and monitored during the treatment by HPLC/MSMS analysis. In order to estimate the influence of water matrix, all experiments were performed in the presence of chloride or sulphate as counter ions. The obtained data revealed that degradation mechanism of DCF by applied treatment process using immobilized TiO2-FeZ includes the adsorption onto photocatalyst surface and consequent degradation. The contribution of homogeneous Fenton reaction due to leached iron ions was found to be negligible. The adsorption and degradation pathway of DCF were influenced by the type of counter ions, which was reflected in the observed changes of water quality parameters.

Keywords

solar photocatalysis;TiO2-FeZ catalyst;diclofenac;degradation pathway;biodegradability;toxicity;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UNG - University of Nova Gorica
UDC: 543.2/.9
COBISS: 4442875 Link will open in a new window
ISSN: 1385-8947
Views: 4695
Downloads: 0
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

URN: URN:SI:UNG
Type (COBISS): Not categorized
Pages: str. 289-302
Issue: ǂVol. ǂ304
Chronology: Nov. 2016
DOI: 10.1016/j.cej.2016.06.083
ID: 9156705