Abstract

The study investigates the treatment of diclofenac (DCF), a pharmaceutical included in the first watch list of the European Water Framework Directive as a new potential priority substance in water. Since the conventional wastewater treatment technologies do not efficiently remove DCF, advanced treatment technologies capable of its complete removal or destruction of its biological activity, need to be evaluated and eventually employed. For that purpose, typical representatives of photooxidative and photocatalytic advanced oxidation processes were applied. The effectiveness of UV-C/H2O2 and UV-A/TiO2 were compared regarding DCF conversion and mineralization kinetics, water quality parameters for assessing biodegradability and toxicity. In spite of similar biodegradability profiles, the obtained results indicate different DCF degradation pathways, which are reflected in different profiles of toxicity towards Vibrio fischeri. The observed DCF conversion and mineralization kinetics revealed the benefits of UV-C/H2O2 process. However, lower toxicity favored the application of photocatalytic over photooxidative treatment for DCF removal.

Keywords

diclofenac;photooxidation;photocatalysis;biodegradability;toxicity;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UNG - University of Nova Gorica
UDC: 543.2/.9
COBISS: 4443131 Link will open in a new window
ISSN: 1878-5190
Views: 4226
Downloads: 0
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

URN: URN:SI:UNG
Type (COBISS): Not categorized
Pages: str. 451-462
Volume: ǂVol. ǂ118
Issue: ǂiss. ǂ2
Chronology: aug. 2016
DOI: 10.1007/s11144-016-1027-4
ID: 9156706