characterization and antimicrobial activity
Abstract
A novel, simple method was developed to synthesize biocompatible composites containing 50% cellulose (CEL) and 50% keratin (KER) and silver in the form of either ionic (Ag+) or Ag0 nanoparticle (Ag+NPs or Ag0NPs). In this method, butylmethylimmidazolium chloride ([BMIm+Cl-]), a simple ionic liquid, was used as the sole solvent and silver chloride was added to the [BMIm+Cl-] solution of [CEL+KER] during the dissolution process. The silver in the composites can be maintained as ionic silver (Ag+) or completely converted to metallic silver (Ag0) by reducing it with NaBH4. Results of spectroscopy (Fourier-transform infrared (FTIR), X-ray diffraction (XRD)) and imaging (scanning electron microscope (SEM)) measurements confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. Powder X-ray diffraction (XRD) and SEM results show that the silver in the [CEL+KER+Ag+] and [CEL+KER+Ag0] composites is homogeneously distributed throughout the composites in either Ag+ (in the form of Ag2O nanoparticles (NPs)) or Ag0NPs form with size of (9 ± 1) nm or (27 ± 2) nm, respectively. Both composites were found to exhibit excellent antibacterial activity against many bacteria including Escherichia coli, Staphylococus aureus, Pseudomonas aeruginosa, methicillin resistant Staphylococus aureus (MRSA), vancomycin resistant Enterococus faecalis (VRE). The antibacterial activity of both composites increases with the Ag+ or Ag0 content in the composites. More importantly, for the same bacteria and the same silver content, [CEL+KER+Ag0] composite exhibits relatively greater antimicrobial activity against bacteria compared to the corresponding [CEL+KER+Ag+] composite. Experimental results confirm that there was hardly any Ag0NPs release from the [CEL+KER+Ag0NPs] composite, and hence its antimicrobial activity and biocompatibility is due, not to any released Ag0NPs but rather entirely to the Ag0NPs embedded in the composite. Both Ag2ONPs or Ag0NPs were found to be toxic to human fibroblasts at higher concentration (>0.72 mmol), and that for the same silver content, [CEL+KER+Ag2ONPs] composite is relatively more toxic than [CEL+KER+Ag0NPs] composite. As expected, by lowering the Ag0NPs concentration to 0.48 mmol or less, the [CEL+KER+Ag0NPs] composite can be made biocompatible while still retaining its antimicrobial activity against bacteria such are E. coli, S. aureus, P. aeruginosa, MRSA, VRE. These results together with our previous finding that [CEL+KER] composites can be used for controlled delivery of drugs such as ciprofloxacin clearly indicate that the [CEL+KER+Ag0NPs] composite possess all required properties for successfully used as high performance dressing to treat chronic ulcerous infected wounds.
Keywords
celulose;keratin;cmposites;biocompatible;ionic liquid;Ag nanoparticles;one-pot synthesis;
Data
Language: |
English |
Year of publishing: |
2016 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UNG - University of Nova Gorica |
UDC: |
54 |
COBISS: |
4588539
|
ISSN: |
1944-8244 |
Views: |
4306 |
Downloads: |
0 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Sinteza biokompatibilnih kompozitov s srebrnimi nanodelci iz celuloze in keratina: karakterizacija in protimikrobna aktivnost |
URN: |
URN:SI:UNG |
Type (COBISS): |
Not categorized |
Pages: |
str. 34791-34801 |
Volume: |
ǂVol. ǂ8 |
Issue: |
ǂiss. ǂ50 |
Chronology: |
2016 |
DOI: |
10.1021/acsami.6b14347 |
ID: |
9229620 |