Aleš Vavpetič (Author)

Abstract

Dokažemo, da je za ▫$n \ge 5$▫ vsak element alternirajoče grupe ▫$A_n$▫ komutator dveh ciklov ▫$A_n$▫. Dokažemo tudi, da je za ▫$n \ge 2$▫ vsak ▫$(2n + 1)$▫-cikel permutacijske grupe ▫$S_{2n + 1}$▫ komutator ▫$p$▫-cikla in ▫$q$▫-cikla ▫$S_{2n + 1}$▫, če in samo če so izpolnjeni naslednji trije pogoji: (i)▫ $n + 1 \le p, q$▫, (ii) ▫$2n + 1 \ge p, q$▫, (iii) ▫$p + q \ge 3n + 1$▫.

Keywords

komutator;cikel;permutacija;alternirajoča grupa;commutator;cycle;permutation;alternating group;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 512.542
COBISS: 17731929 Link will open in a new window
ISSN: 1855-3966
Parent publication: Ars mathematica contemporanea
Views: 979
Downloads: 0
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Komutatorji ciklov v permutacijskih grupah
Secondary abstract: We prove that for ▫$n \ge 5$▫, every element of the alternating group ▫$A_n$▫ is a commutator of two cycles of ▫$A_n$▫. Moreover we prove that for ▫$n \ge 2$▫, a ▫$(2n + 1)$▫-cycle of the permutation group ▫$S_{2n + 1}$▫ is a commutator of a ▫$p$▫-cycle and a ▫$q$▫-cycle of ▫$S_{2n + 1}$▫ if and only if the following three conditions are satisfied: (i) ▫$n + 1 \le p, q$▫, (ii) ▫$2n + 1 \ge p, q$▫, (iii) ▫$p + q \ge 3n + 1$▫.
Secondary keywords: komutator;cikel;permutacija;alternirajoča grupa;
Pages: str. 67-77
Volume: ǂVol. ǂ10
Issue: ǂno. ǂ1
Chronology: 2016
ID: 9233736
Recommended works:
, no subtitle data available
, diplomska naloga visokošolskega strokovnega študija