thesis work
Abstract
One of the most popular methods of knowledge discovery in databases is the extraction of association rules. There are many different algorithms for association rule learning , which differ in space and time complexity. To perform a comparative analysis, we have implemented Apriori, Eclat and FP-growth algorithms and compared their time and memory consumption using synthetic and real databases. The analysis has shown that the FP-growth algorithm is the most efficient in the majority of cases.
Keywords
association rules;data mining;Apriori;Eclat;
Data
Language: |
English |
Year of publishing: |
2017 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UM FERI - Faculty of Electrical Engineering and Computer Science |
Publisher: |
[R. Akhmetshakirova] |
UDC: |
004.85.021(043.2) |
COBISS: |
20432150
|
Views: |
1721 |
Downloads: |
93 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Algoritmi učenja asociacijskih pravil |
Secondary abstract: |
Zanimanje za metode odkrivanja znanja v podatkovnih bazah nenehno raste. Sodobne podatkovne baze so zelo velike, dosegajo terabajte in težijo k nadaljnemu povečanju, kar zahteva učinkovite, razširljive algoritme, ki lahko rešujejo težavo obdelave podatkov v razumnem roku. Ena od najbolj učinkovitih in priljubljenih metod za odkrivanje znanja je učenje asociacijskih pravil za ugotovitev različnih vrst pravilnosti v podatkih. |
Secondary keywords: |
asociacijska pravila;podatkovno rudarjenje;Apriori;Eclat;FP-growth;diplomske naloge; |
URN: |
URN:SI:UM: |
Type (COBISS): |
Bachelor thesis/paper |
Thesis comment: |
Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije |
Pages: |
VIII, 32 f. |
ID: |
9577802 |