thesis work

Abstract

One of the most popular methods of knowledge discovery in databases is the extraction of association rules. There are many different algorithms for association rule learning , which differ in space and time complexity. To perform a comparative analysis, we have implemented Apriori, Eclat and FP-growth algorithms and compared their time and memory consumption using synthetic and real databases. The analysis has shown that the FP-growth algorithm is the most efficient in the majority of cases.

Keywords

association rules;data mining;Apriori;Eclat;

Data

Language: English
Year of publishing:
Typology: 2.11 - Undergraduate Thesis
Organization: UM FERI - Faculty of Electrical Engineering and Computer Science
Publisher: [R. Akhmetshakirova]
UDC: 004.85.021(043.2)
COBISS: 20432150 Link will open in a new window
Views: 1721
Downloads: 93
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Algoritmi učenja asociacijskih pravil
Secondary abstract: Zanimanje za metode odkrivanja znanja v podatkovnih bazah nenehno raste. Sodobne podatkovne baze so zelo velike, dosegajo terabajte in težijo k nadaljnemu povečanju, kar zahteva učinkovite, razširljive algoritme, ki lahko rešujejo težavo obdelave podatkov v razumnem roku. Ena od najbolj učinkovitih in priljubljenih metod za odkrivanje znanja je učenje asociacijskih pravil za ugotovitev različnih vrst pravilnosti v podatkih.
Secondary keywords: asociacijska pravila;podatkovno rudarjenje;Apriori;Eclat;FP-growth;diplomske naloge;
URN: URN:SI:UM:
Type (COBISS): Bachelor thesis/paper
Thesis comment: Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije
Pages: VIII, 32 f.
ID: 9577802