Abstract
Krepki produkt ▫$G_1\boxtimes G_2$▫ grafov ▫$G_1$▫ in ▫$G_2$▫ je graf, katerega množica vozlišč je ▫$V(G_1)\times V(G_2)$▫, dve različni vozlišč ▫$(x_1,x_2)$▫ in ▫$(y_1,y_2)$▫ pa sta povezani natanko tedaj, ko za vsak ▫$i\in \{1,2\}$▫ velja ▫$x_i=y_i$▫ ali ▫$x_iy_i \in E(G_i)$▫. V članku dokažemo, da je za poljubna povezana grafa ▫$G_1$ in $G_2$▫ povezanost po povezavah njunega krepkega produkta ▫$\lambda(G_1 \boxtimes G_2)$▫ enaka $\min\{\delta(G_1\boxtimes G_2), \lambda(G_1)(|V(G_2)|+2|E(G_2)|), \lambda(G_2)(|V(G_1)|+2|E(G_1)|)\}$. Poleg tega v celoti opišemo strukturo možnih najmanših presečnih množic v krepkem produktu grafov.
Keywords
matematika;teorija grafov;povezanost;krepki produkt;produkt grafov;presečna množica;mathematics;graph theory;connectivity;strong product;graph product;separating set;
Data
Language: |
English |
Year of publishing: |
2007 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM FS - Faculty of Mechanical Engineering |
UDC: |
519.17 |
COBISS: |
14368345
|
ISSN: |
1234-3099 |
Views: |
853 |
Downloads: |
301 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary abstract: |
The strong product ▫$G_1 \boxtimes G_2$▫ of graphs ▫$G_1$▫ and ▫$G_2$▫ is the graph with ▫$V(G_1) \times V(G_2)$▫ as the vertex set, and two distinct vertices ▫$(x_1,x_2)$▫ and ▫$(y_1,y_2)$▫ are adjacent whenever for each ▫$i\in \{1,2\}$▫ either ▫$x_i=y_i$▫ or ▫$x_iy_i \in E(G_i)$▫. In this note we show that for two connected graphs ▫$G_1$▫ and ▫$G_2$▫ the edge-connectivity ▫$\lambda(G_1 \boxtimes G_2)$▫ equals ▫$\min\{\delta(G_1\boxtimes G_2), \lambda(G_1)(|V(G_2)|+2|E(G_2)|), \lambda(G_2)(|V(G_1)|+2|E(G_1)|)\}$▫. In addition, we fully describe the structure of possible minimum edge cut sets in strong products of graphs. |
Secondary keywords: |
matematika;teorija grafov;povezanost;krepki produkt;produkt grafov;presečna množica; |
URN: |
URN:SI:UM: |
Pages: |
str. 333-343 |
Volume: |
ǂVol. ǂ27 |
Issue: |
ǂno. ǂ2 |
Chronology: |
2007 |
ID: |
9595934 |