Abstract
Dominacijsko igro na grafu ▫$G$▫ igrata dva igralca, Dominator in Zavlačevalka. Ko igro začenja Dominator, ji rečemo Igra 1, sicer pa Igra 2. V članku vpeljemo grafe pretvarjanja kot tiste grafe, v katerih je vsako vozlišče optimalno začetno vozlišče za Igro 1 in tudi za Igro 2. V tem članku je dokazano, da je vsak minus graf (to je graf, v katerem se Igra 2 konča hitreje kot Igra 1) tudi graf pretvarjanja. Predstavimo netrivialno neskončno družine minus grafov (in s tem tudi grafov pretvarjanja). Minus grafi z igralnim dominantnim številom enakim 3 so okarakterizirani. Vpeljemo tudi grafe dvojnega pretvarjanja in dokažemo, da so med njimi Kneserjevi grafi, ▫$K(n,2)$▫, za ▫$n \ge 6$▫. Dominacijsko igro obravnavamo tudi v posplošenih Petersenovih grafih in Hammingovih grafih. Odkrijemo več posplošenih Petersenovih grafov, ki so grafi pretvarjanja, niso pa vozliščno tranzitivni. Dokažemo, da Hammingov grafi niso grafi dvojnega pretvarjanja.
Keywords
dominacijska igra;igralno dominantno število;grafi pretvarjanja;minus grafi;posplošeni Petersenovi grafi;Kneserjevi grafi;kartezični produkt grafov;Hammingovi grafi;domination game;game domination number;bluff graphs,;minus graphs;generalized Petersen graphs;Kneser graphs;Cartesian product of graphs;Hamming graphs;
Data
| Language: |
English |
| Year of publishing: |
2017 |
| Typology: |
1.01 - Original Scientific Article |
| Organization: |
UL FMF - Faculty of Mathematics and Physics |
| UDC: |
519.17 |
| COBISS: |
17978457
|
| ISSN: |
1234-3099 |
| Views: |
809 |
| Downloads: |
395 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
Slovenian |
| Secondary title: |
Kako dolgo se lahko pretvarjamo v dominacijski igri? |
| Secondary abstract: |
The domination game is played on an arbitrary graph ▫$G$▫ by two players, Dominator and Staller. The game is called Game 1 when Dominator starts it, and Game 2 otherwise. In this paper bluff graphs are introduced as the graphs in which every vertex is an optimal start vertex in Game 1 as well as in Game 2. It is proved that every minus graph (a graph in which Game 2 finishes faster than Game 1) is a bluff graph. A non-trivial infinite family of minus (and hence bluff) graphs is established. Minus graphs with game domination number equal to 3 are characterized. Double bluff graphs are also introduced and it is proved that Kneser graphs ▫$K(n,2)$▫, za ▫$n \ge 6$▫, are double bluff. The domination game is also studied on generalized Petersen graphs and on Hamming graphs. Several generalized Petersen graphs that are bluff graphs but not vertex-transitive are found. It is proved that Hamming graphs are not double bluff. |
| Secondary keywords: |
dominacijska igra;igralno dominantno število;grafi pretvarjanja;minus grafi;posplošeni Petersenovi grafi;Kneserjevi grafi;kartezični produkt grafov;Hammingovi grafi; |
| URN: |
URN:SI:UM: |
| Type (COBISS): |
Scientific work |
| Pages: |
str. 337-352 |
| Volume: |
ǂVol. ǂ37 |
| Issue: |
ǂno. ǂ2 |
| Chronology: |
2017 |
| DOI: |
10.7151/dmgt.1899 |
| ID: |
9608758 |