doktorska disertacija
Andrej Gusel (Author), Vedran Mudronja (Mentor)

Abstract

Meritve ravnosti predstavljajo sredstvo za vrednotenje ravnosti merilnih ploščin ostalih površin, ki služijo kot osnova pri meritvah lege in oblike. Kljub poznavanju postopkov, metod in merilne opreme za merjenje ravnosti ter kljub vedno novim metodam, ki poskušajo poenostaviti postopek, se vedno pojavljajo isti problemi. En glavnih problemov so vplivni faktorji, ki učinkujejo na meritev. Te vplivne faktorje, še bolj pa njihove učinke na meritev, moramo poznati in biti sposobni ovrednotiti, saj predstavljajo osnovoza določanje negotovosti meritve ravnosti. Vplivni faktorji so na splošno sicer znani, manj znani pa so njihovi vplivi na meritev, kar vpliva naodločitev, katere upoštevati in kako, katere pa lahko zanemarimo oziroma preprečimo. Prej ali slej se soočimo tudi s pomanjkljivostmi obstoječih metod. Večino meritev ravnosti izvajamo po metodi Union Jack, ki poleg vrste prednosti prinaša tudi nekaj pomanjkljivosti. Glavna pomanjkljivost je, da mreža že v osnovi bolj slabo pokrije obravnavano površino. Bolj groba mreža res pohitri postopek merjenja, vendar pa se zato pokritost površine še dodatnozmanjša, s tem pa se nam lahko iz obravnave izmuzne katero od odstopanjpovršine, to pa seveda vpliva na rezultat in negotovost. Zdi se, da bi za bolj drobne nepravilnosti potrebovali bolj gosto mrežo, za večja odstopanja pa bi zadoščala bolj groba mreža. Če torej glede na obliko površine določamo gostoto merilne mreže, gostota merilne mreže pa spet pogojuje stopnjo pokritosti površine, moramo najti odgovor na vprašanje, ki sledi: kako sta povezani oblika površine in negotovost meritve? Ali bi bilo res možno (in smiselno), da bi za različne oblike površin vnaprej definirali različne merilne mreže? Pri odgovoru na te izzive si pomagamo z metodo Monte Carlo. Model meritve služi za osnovo algoritma, s katerim je mogoče preko serije simulacij določiti negotovost meritve. Rezultati za različne merilne mreže, prilagojene obliki površine, kažejo presenetljive izsledke.

Keywords

model negotovosti ravnosti;simulacija ravnosti Monte Carlo;simulacija merilne plošče;

Data

Language: Slovenian
Year of publishing:
Source: [Maribor
Typology: 2.08 - Doctoral Dissertation
Organization: UM FS - Faculty of Mechanical Engineering
Publisher: A. Gusel]
UDC: 531.717.8
COBISS: 245713920 Link will open in a new window
Views: 3598
Downloads: 240
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Mathematical model of uncertainty evaluation in flatness measurement
Secondary abstract: Flatness measurement is a mean for flatness evaluations of measurement plates and other surfaces, which represent a basis for measurements of position and form. Procedures, measurement equipment and methods are well known, and despite all the efforts to simplify the procedures, we face the very same problems as before. Large part of these problems are the impact factors, whichinfluence the measurement. In order to be able to determine the measurement uncertainty, we must be able to evaluate these factors and their effects on the measurement itself. All impact factors are well known, less known is their impact on the measurement, and a resulting decision, which factors are taken into consideration and how, and which can be ignored or evenprevented. Sooner or later we face the deficiencies of existing methods. Usually, flatness measurements are performed using a Union Jack method, which brings a lot of advantages, together with some disadvantages. The main disadvantage of this method is only average coverage of the surface we measure. A coarser grid does improve the duration of the measurement, but as the grid gets coarser, the coverage factor gets smaller. With that, it is possible to neglect some of possible surface defects, which affect both the result and uncertainty. It seems as a denser grid would be needed for finer defects on the surface, and a coarser grid would be sufficient for larger irregularities. If the coverage of the surface is based on the density of thegrid, and the grid density could be determined based on the shape of the surface, we must ask ourselves the following question - what is the relation between the shape of the surface and the measurement uncertainty? Would it be possible and would it make any sense to define suitable measurement grids according to the type of the surface? To answer all these challenges, a MonteCarlo method comes of use. A measurement model serves as a basis for the algorithm, which is used to determine the measurement uncertainty over a series of simulations. Results for different types of measurement grid, adapted to the shape of the surface, are astonishing.
Secondary keywords: Ravnost;Disertacije;Merjenje;
URN: URN:SI:UM:
Type (COBISS): Dissertation
Thesis comment: Univ. Maribor, Fak. za strojništvo
Pages: XI, 139, [5] f.
Keywords (UDC): mathematics;natural sciences;naravoslovne vede;matematika;physics;fizika;general mechanics;mechanics of solid and rigid bodies;splošna mehanika;mehanika trdnih in togih teles;measurement of geometric and mechanical quantities: instruments;methods and units;
ID: 986120
Recommended works:
, lecture, presented at the European Human Behaviour and Evolution Association Conference [also] EHBEA, St Andrews, UK, 6-8 April 2009