Povzetek

The contribution deals with numerical simulation of natural convection in micropolar fluids, describing flow of suspensions with rigid and underformable particles with own rotation. The micropolar fluid flow theory is incorporated into the framework of a velocity-vorticity formulation of Navier-Stokes equations. The governing equations are derived in differential and integral form, resulting from the application of a boundary element method (BEM). In integral transformations, the diffusion-convection fundamental solution for flow kinetics, including vorticity transport, heat transport and microrotation transport, is implemented. The natural convection test case is the benchmark case of natural convection in a square cavity, and computations are performed for Rayleigh number values up to 107. The results show, which microrotation of particles in suspension in general decreases overall heat transfer from the heated wall and should not therefore be neglected when computing heat and fluid flow of micropolar fluids.

Ključne besede

natural convection;micropolar fluid;boundary element method;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FS - Fakulteta za strojništvo
UDK: 532.7:519.61/.64
COBISS: 13040150 Povezava se bo odprla v novem oknu
ISSN: 0955-7997
Št. ogledov: 1893
Št. prenosov: 93
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
URN: URN:SI:UM:
Strani: str. 485-492
Letnik: ǂVol. ǂ33
Zvezek: ǂno. ǂ4
Čas izdaje: Apr. 2009
Ključne besede (UDK): mathematics;natural sciences;naravoslovne vede;matematika;physics;fizika;fluid mechanics in general;mechanics of liquids (hydromechanics);mehanika tekočin;mehanika kapljevin;kinetic theory of liquids;osmosis;solution and solutions;mathematics;natural sciences;naravoslovne vede;matematika;mathematics;matematika;computational mathematics;numerical analysis;računska matematika;numerična analiza;
DOI: 10.1016/j.enganabound.2008.08.013
ID: 1006254