Povzetek
 
We prove in this note the following result. Let ▫$n>1$▫ be an integer and let ▫$R$▫ be an ▫$n!$▫-torsion-free semiprime ring with identity element. Suppose that there exists an additive mapping ▫$D : R \to R$▫ such that ▫$D(x^n)=\Sigma_{j^n}=1^{x^{n-j}}D(x)x^{j-1}$▫ is fulfilled for all ▫$ x \in R$▫. In this case, ▫$D$▫ is a derivation. This research is motivated by the work of Bridges and Bergen (1984). Throughout, ▫$R$▫ will represent an associative ring with center ▫$Z(R)$▫. Given an integer ▫$n > 1$▫, a ring ▫$R$▫ is said to be ▫$n$▫-torsion-free if for ▫$x \in R$▫, ▫$nx=0$▫ implies that ▫$x=0$▫. Recall that a ring ▫$R$▫ is prime if for ▫$ a,b \in R$▫, ▫$aRb=(0)$▫ implies that either ▫$a=0$▫ or ▫$b=0$▫, and is semiprime in case ▫$aRa=(0)$▫ implies that ▫$a=0$▫. An additive mapping ▫$D:R \to R$▫ is called a derivation if ▫$D(xy)=D(x)y+xD(y)$▫ holds for all pairs ▫$x,y \in R$▫ and is called a Jordan derivation in case ▫$D(x^2)=D(x)x+xD(x)$▫ is fulfilled for all ▫$x \in R$▫. Every derivation is a Jordan derivation. The converse is in general not true. A classical result of Herstein (1957) asserts that any Jordan derivation on a prime ring with characteristic different from two is a derivation. A brief proof of Herstein's result can be found in 1988 by Brešar and Vukman. Cusack (1975) generalized Herstein's result to ▫$2$▫-torsion-free semiprime rings (see also Brešar (1988) for an alternative proof). For some other results concerning derivations on prime and semiprime rings, we refer to [2, 7, 8, 9, 10].
    Ključne besede
 
matematika;asociativni kolobarji in algebre;odvajanja;polprakolobarji;ne zaključna dela;mathematics;associative rings an algebras;derivations;semiprime rings;
    Podatki
 
    
        
            | Jezik: |  
            Angleški jezik | 
        
        
        
            | Leto izida: |  
            2005 | 
        
            
        
        
            | Tipologija: |  
            1.01 - Izvirni znanstveni članek |         
        
            
        
            | Organizacija: |  
            UM PEF - Pedagoška fakulteta |         
        
        
            | UDK: |  
            512.552 |         
        
   
        
        
            | COBISS: |  
            
                
                    14369032
                     
                
             | 
        
        
        
            | ISSN: |  
            0161-1712 | 
        
        
  
        
            | Št. ogledov: |  
            1239 | 
        
        
        
            | Št. prenosov: |  
            354 | 
        
        
        
            | Ocena: |  
            0 (0 glasov) | 
        
        
            | Metapodatki: |  
            
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
             | 
        
    
    
    Ostali podatki
 
    
        
            | Sekundarni jezik: |  
            Slovenski jezik | 
        
        
        
            | Sekundarni naslov: |  
            Opazka o odvajanjih na polprakolobarjih | 
        
        
        
        
        
            | Sekundarne ključne besede: |  
            Matematika;Algebra;Kolobarji (algebra);Polkolobarji; | 
        
        
            | URN: |  
            URN:SI:UM: | 
        
        
            
        
            | Vrsta dela (COBISS): |  
            Članek v reviji | 
        
        
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
            | Strani: |  
            str. 3347-3350 | 
        
        
           
        
           
        
            | Zvezek: |  
            20 | 
        
        
           
        
            | Čas izdaje: |  
            2005 | 
        
        
           
        
           
        
           
        
            | DOI: |  
            10.1155/IJMMS.2005.3347 | 
        
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: |  
            10842668 |