review article
Matej Mencinger (Avtor)

Povzetek

When considering friction or resistance, many physical processes are mathematically simulated by quadratic systems of ODEs or discrete quadratic dynamical systems. Probably the most important problem when such systems are applied in engineering is the stability of critical points and (non)chaotic dynamics. In this paper we consider homogeneous quadratic systems via the so-called Markus approach. We use the one-to-one correspondence between homogeneous quadratic dynamical systems and algebra which was originally introduced by Markus in (1960). We resume some connections between the dynamics of the quadratic systems and (algebraic) properties of the corresponding algebras. We consider some general connections and the influence of power-associativity in the corresponding quadratic system.

Ključne besede

quadratic systems;nonlinear systems;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.02 - Pregledni znanstveni članek
Organizacija: UM FGPA - Fakulteta za gradbeništvo, prometno inženirstvo in arhitekturo
UDK: 512.646
COBISS: 14945814 Povezava se bo odprla v novem oknu
ISSN: 0161-1712
Št. ogledov: 664
Št. prenosov: 336
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvadratični sistemi;nelinearni sistemi;
URN: URN:SI:UM:
Vrsta dela (COBISS): Znanstveno delo
Strani: 12 str.
Letnik: ǂVol. ǂ2011
Zvezek: ǂArticle ID ǂ230939
Čas izdaje: 2011
DOI: 10.1155/2011/230939
ID: 10842671
Priporočena dela:
, ni podatka o podnaslovu
, delo diplomskega seminarja