Gregor Donaj (Avtor), Zdravko Kačič (Avtor)

Povzetek

The incorporation of grammatical information into speech recognition systems is often used to increase performance in morphologically rich languages. However, this introduces demands for sufficiently large training corpora and proper methods of using the additional information. In this paper, we present a method for building factored language models that use data obtained by morphosyntactic tagging. The models use only relevant factors that help to increase performance and ignore data from other factors, thus also reducing the need for large morphosyntactically tagged training corpora. Which data is relevant is determined at run-time, based on the current text segment being estimated, i.e., the context. We show that using a context-dependent model in a two-pass recognition algorithm, the overall speech recognition accuracy in a Broadcast News application improved by 1.73% relatively, while simpler models using the same data achieved only 0.07% improvement. We also present a more detailed error analysis based on lexical features, comparing first-pass and second-pass results.

Ključne besede

govorne tehnologije;razpoznavanje govora;avtomatsko razpoznavanje govora;speech recognition;factored language model;dynamic backoff path;word context;inflectional language;morphosyntactic tags;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko
UDK: 004.934
COBISS: 20330774 Povezava se bo odprla v novem oknu
ISSN: 1687-4722
Št. ogledov: 1139
Št. prenosov: 319
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: govorne tehnologije;razpoznavanje govora;avtomatsko razpoznavanje govora;
URN: URN:SI:UM:
Vrsta dela (COBISS): Znanstveno delo
Strani: str. 1-16
Letnik: ǂVol. ǂ2017
Zvezek: ǂno. ǂ6
Čas izdaje: 2017
DOI: 10.1186/s13636-017-0104-6
ID: 10844541
Priporočena dela:
, ni podatka o podnaslovu
, diplomska naloga univerzitetnega študijskega programa
, diplomska naloga visokošolskega študijskega programa
, diplomska naloga univerzitetnega študijskega programa