Povzetek

We address the problem of analyzing the radius of convergence of perturbative expansion of nonequilibrium steady states of Lindblad-driven spin chains. A simple formal approach is developed for systematically computing the perturbative expansion of small driven systems. We consider the paradigmatic model of an open XXZ spin-1/2 chain with boundary-supported ultralocal Lindblad dissipators and treat two different perturbative cases: (i) expansion in the system-bath coupling parameter and (ii) expansion in the driving (bias) parameter. In the first case (i) we find that the radius of convergence quickly shrinks with increasing the system size, while in the second case (ii) we find that the convergence radius is always larger than 1, and in particular it approaches 1 from above as we change the anisotropy from an easy-plane (XY) to an easy-axis (Ising) regime.

Ključne besede

kvantna mehanika;odprti sistemi;spinske verige;quantum mechanics;open systems;spin chains;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: American Physical Society
UDK: 530.145
COBISS: 3114852 Povezava se bo odprla v novem oknu
ISSN: 2470-0045
Št. ogledov: 1004
Št. prenosov: 1011
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvantna mehanika;odprti sistemi;spinske verige;
Vrsta dela (COBISS): Znanstveno delo
Strani: str. 042137-1-042137-5
Letnik: ǂVol. ǂ95
Zvezek: ǂiss. ǂ4
Čas izdaje: 2017
DOI: 10.1103/PhysRevE.95.042137
ID: 10850742